
 

  

Title Page  

The Role of Granularity in Causal Learning 
 
 
 
 
 
 
 
 

by 
 

Kevin Wen Xin Soo 
 

B.A. in Psychology, HELP University, 2009 
 

M.S. in Cognitive and Decision Sciences, University College London, 2011 
 

M.S. in Cognitive Psychology, University of Pittsburgh, 2016 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of the 
 

Kenneth P. Dietrich School of Arts and Sciences  
 

in partial fulfillment 
  

of the requirements for the degree of 
 

Doctor of Philosophy 
 
 
 
 
 
 
 

 
University of Pittsburgh 

 
2019



ii 

Committee Membership Page  

UNIVERSITY OF PITTSBURGH 
 

DIETRICH SCHOOL OF ARTS AND SCIENCES 
 
 
 
 
 
 
 
 
 

This dissertation was presented 
 

by 
 
 

Kevin Wen Xin Soo 
 
 

It was defended on 
 

March 26, 2019 
 

and approved by 
 

Melissa E. Libertus, Associate Professor, Psychology 
 

Timothy J. Nokes-Malach, Associate Professor, Psychology, Learning Sciences & Policy 
 

Christian D. Schunn, Professor, Psychology, Learning Sciences & Policy 
 

James F. Woodward, Distinguished Professor, History & Philosophy of Science 
 

Dissertation Director: Benjamin M. Rottman, Associate Professor, Psychology 
  



iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by Kevin Wen Xin Soo 
 

2019 
 
 
 

 



 

iv 

Abstract 

The Role of Granularity in Causal Learning 
 

Kevin Wen Xin Soo, PhD 
 

University of Pittsburgh, 2019 
 
 

 
Prior experiments on causal learning have typically investigated how people learn about the 

relationships between binary variables (e.g., patients either take or do not take a drug, and either 

exhibit or do not exhibit a particular symptom). Such experiments are often oversimplifications of 

real-world learning contexts, in which people have to learn about relationships between causes and 

effects of varying granularities (i.e. how many levels a variable has). In this dissertation, I explored 

how the granularities of a cause and effect influenced peoples’ estimates of the strength of causal 

relationships. Four experiments were conducted in which participants learned about a cause-effect 

relationship by observing a cause and effect over multiple trials and making a judgment about the 

causal strength. On each trial, participants first viewed the state of the cause and predicted the state 

of the effect. Participants made stronger causal strength judgments when the effect was more 

coarse-grained, despite the objective causal strength being fixed (Experiment 1). The influence of 

the effect’s granularity was due to participants perceiving the prediction task as subjectively easier 

when it involved a coarse-grained effect, and not due to feedback they received for their predictions 

(Experiment 2). These findings supported the newly proposed feelings-of-success heuristic; I 

proposed that participants made judgments of objective causal strength by substituting their 

subjective feelings of how successfully they made predictions of the effect. In support of this 

hypothesis, participants’ judgments of how successful they were in the prediction task mediated 

the relationship between the granularity of the effect and their judgments of objective causal 

strength (Experiment 3). Finally, the influence of the effect’s granularity was attenuated when 
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participants did not make explicit predictions, suggesting that the effect’s granularity influenced 

causal strength judgments via the subjective feelings associated with the act of prediction 

(Experiment 4). Collectively, these studies show that while people are generally accurate when 

estimating causal strength, real-world factors like the granularity of variables can lead to biases in 

judgments. 
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1.0 Introduction 

In everyday life, we routinely learn and reason about the relationships between causes and their 

effects. Having knowledge about the relationships between such variables allows us to explain, 

predict, and exert control over our environments (Keil, 2006; Lombrozo, 2010; Sloman, 2005; 

Sloman & Lagnado, 2015; Waldmann & Hagmayer, 2014). Much research has explored how 

people learn about the strength of causal relationships from observational data (Cheng, 1997; 

Griffiths & Tenenbaum, 2005; for a review, see Holyoak & Cheng, 2011) and how people predict 

the state of a variable from knowledge of its causes or effects (Park & Sloman, 2013; Rehder, 

2014; Rottman & Hastie, 2016; for a review, see Rottman & Hastie, 2013).  

A prototypical causal learning task involves presenting participants with joint observations 

of a cause and an effect, and eliciting a judgment about the strength of the cause’s influence on the 

effect. In most experiments, the cause and effect are typically represented as binary variables (e.g., 

multiple patients either take or do not take a drug, and they either exhibit or do not exhibit a 

particular symptom). While some variables do truly fall on a binary scale (e.g., a light may be 

switched either on or off), many variables can take on more than two values, and more importantly, 

we may perceive and represent such variables as having multiple levels when learning and 

reasoning about them (e.g., we can perceive gradations of temperature, as opposed to simply 

thinking of “hot” vs. “cold”). Thus, the variables used in experiments of causal learning and 

reasoning are sometimes oversimplifications of real-world variables, which can vary greatly in 

how fine-grained or coarse-grained they are.  
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The goal of the present research is to investigate causal learning and reasoning when the 

variables involved possess differing levels of granularity – i.e. the variables differ in the number 

of levels they can take on. The plan for the introduction is as follows. First, I provide an overview 

of prior research on causal learning that has ignored questions related to the granularity of the 

variables in order to motivate the present research. Second, I discuss the implications of causal 

learning with variables that are fine-grained vs. coarse-grained. Third, I outline several theories 

that make predictions for how the granularities of a cause and effect can influence causal learning. 

Fourth, I describe the ways causal strength judgments are measured in the present research. Finally, 

I provide an outline for the current experiments. 

1.1 The granularity of variables in prior research 

Most prior research on causal learning has focused on how people learn the strength of the 

relationship between a binary cause and binary effect (e.g., Barberia, Baetu, Sansa, & Baker, 2014; 

Buehner, Cheng, & Clifford, 2003; Liljeholm & Cheng, 2007; Mandel & Lehman, 1998; Shanks, 

Pearson, & Dickinson, 1989; White, 2003; for reviews, see Holyoak & Cheng, 2011; Perales & 

Shanks, 2007). This has been coupled with the development of normative models of causal 

induction that apply to binary causes and effects (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005; 

Jenkins & Ward, 1965; for a review, see Hattori & Oaksford, 2007). 
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Recognizing that real-world causal learning often involves combinations of both coarse- 

and fine-grained variables1, more recent research has involved experiments involving binary 

causes and continuous effects (Chow, Don, Colagiuri, & Livesey, 2018; Derringer & Rottman, 

2018; Obrecht, Chapman, & Gelman, 2007; Rottman, 2016; Saito, 2015; White, 2015), continuous 

causes and binary effects (Marsh & Ahn, 2009; Pacer & Griffiths, 2011), or continuous causes and 

continuous effects (Davis, Bramley, & Rehder, 2018; Soo & Rottman, 2016, 2018). The research 

cited here can be represented in a two-dimensional space with X as the granularity of the cause and 

Y the granularity of the effect, each of which range from binary to continuous.2 

The increased focus on learning contexts involving more than just binary causes and effects 

leads to research with greater external validity, capturing the diverse granularities of variables 

found in real-world causal learning. However, no research to date has systematically investigated 

the implications of different levels of granularities of causes and effects on causal learning and 

                                                 

1 The early and outsized focus on learning about relationships between binary variables was partly unique to 

the field of causal cognition. The same cognitive task – inducting a relationship between variables – has long been 

studied between continuous variables in domains such as function learning (Brehmer, 1971; DeLosh et al., 1997; 

Hogarth & Karelaia, 2011; Lucas, Griffiths, Williams, & Kalish, 2015; McDaniel & Busemeyer, 2005; Schulz, 

Tenenbaum, Duvenaud, Speekenbrink, & Gershman, 2017) and covariation detection (Crocker, 1981; Díez-Alegría, 

Vázquez, & Hernández-Lloreda, 2008; Erlick & Mills, 1967; Erlick, 1966; Hutchinson & Alba, 1997; Kareev, 1995; 

Lane, Anderson, & Kellam, 1985; Rensink, 2017; Vallée-Tourangeau, Baker, & Mercier, 1994; Vogel, Kutzner, 

Freytag, & Fiedler, 2014; Well, Boyce, Morris, Shinjo, & Chumbley, 1988). 

2 Although I refer to continuous variables, the variables used in such studies are not technically continuous 

because they do not have infinite possible levels. Rather, these variables can take on a very large number of possible 

levels such that participants in experiments perceive them as continuous. In the present research, I consider a variable 

to be continuous for practical purposes if it meets this criterion.  
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reasoning. This is a glaring lacuna; people often have to learn about the relationships between 

causes and effects that do not have similar granularities. For instance, people may have to learn 

about the relationship between a binary cause (e.g., either taking or not taking a painkiller pill) and 

a more fine-grained effect (e.g., varying levels of pain). In the present research, I investigated how 

the granularities of the cause and effect influence how people learn about the causal strength 

underlying a cause-effect relationship.  

1.2 Continuous vs. discretized variables 

As mentioned above, the binary variables used in causal learning experiments are sometimes 

oversimplifications of real-world variables. For example, while participants in experiments may 

be told a cover story involving patients who either take or do not take a drug, in the real world, 

drugs can be taken in dosages varying from zero milliliters (“no drug”) to some maximum dosage 

in milliliters.  

Some binary variables may truly have only two possible states in the real world, but binary 

variables (and variables with a discrete number of states more generally) may also be “discretized” 

from continuous variables. For example, the exact level of an enzyme in a patient’s bloodstream 

is a continuous variable, but it may appear as a binary variable if it is measured by a test that is 

only sensitive to the presence vs. absence of the enzyme, or it may appear as a discrete variable 

with three levels, if the test is only sensitive enough to report low, average, or high levels of the 
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enzyme. In other words, how fine- or coarse-grained a variable appears may be due to the 

sensitivity of its measurement.3 

In the remainder of the present section, I describe a process by which continuous variables 

are discretized, and how this influences causal induction from a statistical perspective, potentially 

leading to issues for causal learning. Assume that a cause (C) and effect (E) are continuous 

variables related as described in the following equation: 

 

𝐸𝐸 ~ 𝑓𝑓(𝐶𝐶) +  𝜀𝜀 

 

The state of the effect is a function (f) of the state of the cause and noise (ε). For example, 

the level of a particular enzyme in peoples’ bloodstreams (E) may be a linear function of the dosage 

of a drug (C) and noise. If 20 patients are administered different dosages of the drug, the causal 

relationship can be said to “generate” hypothetical data as in Figure 1. From all the observations, 

the correlation between the drug and enzyme levels (r = +.70) would provide an estimate of the 

strength of the causal relationship. 

                                                 

3 The limits of measurement may be external to a learner (as in the example of tests with varying sensitivities), 

but may also be due to limits on a learner’s perceptual system – i.e. learners may only be able to discriminate between 

levels up to a particular level of granularity. In the present research, I focus on the former case, in which variables 

appear to have particular granularities due to external limits of measurement. 
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Figure 1. Hypothetical data of 20 patients. A value of zero (one) indicates the minimum (maximum) of that 

variable. Dashed lines indicate median levels for both variables. 

 

However, consider what happens if the measurements of the drug and enzyme are only 

sensitive enough to detect if a substance is present or not; if the drug or enzyme exceeds a certain 

threshold (e.g., the median value of 0.50 out of 1.00) it is categorized as “present”, but is otherwise 

categorized as “absent” (see dashed lines in Figure 1). Such median splits are commonly used 

within the social sciences to categorize entities into groups based on their levels of a continuous 

predictor (Iacobucci, Posavac, Kardes, Schneider, & Popovich, 2015; MacCallum, Zhang, 

Preacher, & Rucker, 2002). This discretization scheme transforms C and E into binary variables. 

Other discretization schemes resulting in variables with more levels are also possible (e.g., Gelman 

& Park, 2009). 

The practice of discretizing variables is sometimes necessary for practical reasons, but 

controversial from a statistical perspective (Cohen, 1983; Fitzsimons, 2008). Compared to 

continuous variables upon which they are based, discretized variables contain less information 
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because they gloss over within-level variability (Rucker, McShane, & Preacher, 2015). 

Additionally, when estimating the strength of the relationships between variables, discretization 

can lead to false positives and false negatives (Maxwell & Delaney, 1993; McClelland, Lynch, 

Irwin, Spiller, & Fitzsimons, 2015). For example, if the data in Figure 1 were discretized based on 

the median cutoffs, the correlation between the discretized states of the cause and effect would be 

substantially weaker (r = +.26) than when it was computed using the continuous variables. 

Although observations of continuous variables offer the best path to accurate causal 

induction from a statistical perspective, there are psychological reasons why human learners may 

show a preference for coarser-grained variables. Due to limitations in human perceptual and 

cognitive systems, learners may need to rely on discretized states of variables; early research from 

psychophysics has found that people are poor at identifying the absolute levels of continuous 

perceptual features (Garner & Hake, 1951; Helson, 1964; Restle & Merr, 1968; Sarris, 1967; 

Thurstone, 1927; also see Donkin, Rae, Heathcote, & Brown, 2015). Research has found that when 

presented with continuous variables, human learners spontaneously categorize observed 

continuous states into discretized states or categories (Fisher & Keil, 2018; Goldstone, 1994; 

Stewart, Brown, & Chater, 2002; Stewart & Chater, 2002). For example, when presented with 

tones of varying frequencies, people encode the relative levels between pairs of tones (i.e. which 

one was “higher” vs. “lower”) rather than the absolute levels (Stewart, Brown, & Chater, 2005). 

People use such discretized perceptual information to inform their higher-order judgments (e.g., 

Stewart, 2009; Stewart, Chater, & Brown, 2006), including causal judgments (Marsh & Ahn, 2009; 

Soo & Rottman, 2018). 

In sum, when distinguishing between continuous vs. discretized variables, human learners 

appear to make better use of discretized information due to limitations in their perceptual and 
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cognitive systems. However, from a statistical perspective, discretized variables inevitably lose 

some of the information captured by continuous variables. There appear to be competing reasons 

for why human learners might privilege variables with either finer or coarser granularity in causal 

learning. 

1.3 How granularity influences causal learning 

The present research is concerned with whether the granularities of causes and effects influence 

peoples’ judgments of causal strength, when holding the objective causal strength constant. In the 

present section, I describe several theories that predict people might make either stronger or weaker 

judgments of the strength of causal relationships involving causes and effects of varying 

granularities. These theories are not mutually exclusive; it is possible that learners might display 

patterns of judgments consistent with multiple theories. 

Even when the objective strength between the cause and effect is held constant (e.g., r = 

+.60), particular granularities in the cause and/or effect may influence learners to make stronger 

or weaker causal judgments than is warranted by the objective strength. Another way of saying 

this is that particular granularities in the variables may make a causal relationship appear “better” 

than it objectively is; causes that have a stronger influence on their effects can be viewed as being 

“better” because they have more utility for predicting and controlling their effects.  

The following figure depicts the predicted causal judgments based on the theories 

presented here. Figure 2A displays the predicted causal judgments if a learner made judgments 

based only on the objective strength of the relationship; regardless of the granularities of the cause 

or effect, their judgments would be the same. 
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Figure 2. Predicted causal judgments by various theories based on varying granularities of the cause and effect, 

when the objective strength of the causal relationship is held constant. Variables with lesser granularity (i.e. 

coarse-grained variables) have fewer levels. 

1.3.1  The granularity of the cause: The specificity criterion 

One possibility is that the granularity of the cause could influence peoples’ judgments of the 

strength of the relationship between the cause and the effect. There is a theory from philosophy 

that makes a somewhat analogous prediction, specifically, that causes containing the most detail 

(i.e. are more fine-grained) should always be judged as better causes (Franklin-Hall, 2016; 

Weslake, 2010; also see Griffiths, et al., 2015). According to this theory, coarse-grained variables 

are considered “epiphenomenal”; such variables are deemed to be mere aggregations or high-level 

descriptions of processes involving more fine-grained causes and effects. Thus, it is fine-grained 
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variables, rather than coarse-grained ones, that exert causal powers over effects (Robb & Heil, 

2018). I refer to this as the specificity criterion because it predicts a preference for causes with 

high specificity in the information they contain. Similar to the statistical perspective outlined in 

Section 1.2, this theory posits that finer-grained continuous variables are better than coarser-

grained discretized variables for causal learning, except that it predicts that people are sensitive to 

the granularity of the cause, but not the effect.  

This specificity criterion predicts an influence of the granularity of the cause on causal 

judgments. If people are sensitive to the specificity criterion, then they should make stronger 

judgments of causal strength when the cause is more fine-grained (see Figure 2B).  

1.3.2  The granularity of the effect: The feelings-of-success heuristic 

Another possibility is that the granularity of the effect could influence peoples’ judgments of the 

strength of the relationship between the cause and the effect. Although I am unaware of any 

philosophical theories that make this prediction, there are psychological reasons for making this 

prediction, specifically, that people will judge the cause-effect relation to be stronger when the 

effect is more coarse-grained. This hypothesis has to do with the fact that (1) people spontaneously 

make predictions based on related information that they observe, and (2) causes occur before their 

effects; upon observing a cause, people spontaneously make predictions about related effects 

(Buehner, 2012; Fernbach, Darlow, & Sloman, 2011; Greville & Buehner, 2010; Lagnado & 

Sloman, 2006; Shanks et al., 1989; Sloman & Lagnado, 2015, 2005). 

The tendency to make predictions as described in (1) applies to many domains of cognition. 

When given information about some variable, people automatically and intuitively make 

inferences about related quantities. These inferences include making predictions about behaviors 
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and membership in social groups (Kahneman & Tversky, 1973; McCauley, Stitt, & Segal, 1980; 

Nisbett & Borgida, 1975; Sarbin, 1944; Tversky & Kahneman, 1983), predictions of numerical 

quantities from cues (Birnbaum, 1976), predictions of future words when reading (Federmeier, 

2007), and predictions of the consequences of motor actions (Knoblich & Flach, 2001; Sebanz & 

Knoblich, 2009; Wolpert, Doya, & Kawato, 2003). These constitute a more active form of learning 

about the world (as opposed to passive observation); people make predictions based on information 

they possess, and either confirm or update their beliefs based on the accuracy of their predictions 

(see Danks, 2003; Miller, Barnet, & Grahame, 1995; Rescorla & Wagner, 1972; Wagner & 

Rescorla, 1972). 

The tendency to make predictions is particularly relevant when learning about causal 

relationships in the real world, because as described in (2), people commonly observe causes 

before their effects. After experiencing or observing a cause, people form expectations about the 

subsequent appearance of its associated effect (Buehner, 2012; Hagmayer & Waldmann, 2002; 

Lagnado & Sloman, 2004).  

Within a learning context in which people have the opportunity to observe a cause and 

make subsequent predictions of an effect, it is possible that the granularity of the effect influences 

causal judgments. Learners may find it more difficult to make precise predictions of more fine-

grained effects because they are less likely to predict the effect’s exact true state. In contrast, 

making predictions of more coarse-grained effects may be perceived as easier because learners are 

likelier to predict the effect’s exact true state, even if only by chance. 

In light of this, I propose a novel hypothesis: learners judge the strength of causal 

relationships based on their feelings of perceived ease (or difficulty) in making accurate 

predictions of the effect during learning, which I refer to as subjective feelings-of-success. 
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Specifically, I propose that learners will experience greater subjective feelings-of-success when 

making predictions of more coarse-grained effects, and these feelings will then be substituted for 

judgments of the objective causal strength. I refer to this substitution as the feelings-of-success 

heuristic. The use of this heuristic should result in stronger judgments when the effect is more 

coarse-grained (see Figure 2C). Another way of describing the substitution implied by the heuristic 

is to say that subjective feelings-of-success is a mechanism or mediator by which the granularity 

of the effect influences judgments of objective causal strength. 

The feelings-of-success heuristic is analogous to instances in which people make 

judgments of inaccessible quantities by “substituting” more accessible affective and subjective 

quantities. For example, people use feelings of fluency as a substitute for their judgments of how 

well they have learned some information (Hertwig, Herzog, & Schooler, 2008; Hertzog, Dunlosky, 

Robinson, & Kidder, 2003; Koriat, 2008; Koriat & Ma’ayan, 2005; Oppenheimer, 2008). As 

another example, people judge cities they recognize as being larger than cities they do not 

recognize; this substitution is reasonable if one assumes that larger cities tend to be more 

recognizable or salient in memory (Gigerenzer, 2008; Gigerenzer & Goldstein, 2011; Goldstein & 

Gigerenzer, 2002; Kahneman & Tversky, 1973; Pachur & Hertwig, 2006).  

Subjective feelings-of-success can be viewed as a rational cue to objective causal strength 

in most situations. When a causal relationship is very strong (e.g., between the cause and effect, r 

= +1 or -1), a learner will presumably be able to make accurate and successful predictions. If the 

causal strength is weak (e.g., r close to zero), a learner will presumably have less accuracy and 

success in making predictions. Thus, prediction accuracy (and consequently, prediction success) 

should be highly correlated with the objective causal strength of a relationship in most situations.  
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In the present research, the objective causal strength is held constant, and the question of 

interest is whether manipulating the granularity of the effect might artificially influence learners’ 

subjective feelings-of-success, and thus their judgments of objective strength. 

1.3.3  The granularity of the cause and effect: The proportionality criterion 

In principle, the granularities of the cause and effect could interact in various ways, in turn 

influencing peoples’ judgments about causal strength. I focus on one particular theory-driven 

hypothesis, that people might make stronger judgments of causal strength if the granularities of 

the cause and effect are the same.  

Within the field of philosophy, features of variables akin to the granularity of variables can 

be taken as criteria for evaluating causal claims. Woodward (2010, 2018a, 2018b; also see 

McGrath, 1998; Yablo, 1992) refers to this as the proportionality criterion. The logic of it is as 

follows. Causal claims about some system (e.g., that C is a strong cause of E) can be framed at 

different levels of description, each involving variables that are more or less detailed. According 

to Woodward, causal claims should be judged more favorably if the cause contains all necessary 

information relevant to explaining the effect, but omits all unnecessary information. In other 

words, Woodward is claiming that causes that are proportional to their effects (i.e. similar in its 

level of description) should be endorsed as good causes for predicting and controlling the effect.  

The proportionality criterion is a general principle that can be applied broadly to assess 

what constitutes an appropriate causal inference. For example, a colleague’s behavior (e.g., writing 

a curt email, or being late to a meeting) can be explained at (1) a fine-grained physiological level, 

as being due to particular patterns of neuronal activity, or (2) a coarse-grained psychological level, 

by appealing to cognitive concepts like intentions and beliefs. Based on the proportionality 
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criterion, a cause from level (2) would be judged as a better cause, as it provides a causal 

explanation for the effect that is situated at a level of description that is more proportional to its 

effect.  

By analogy, the proportionality criterion prescribes that causes will be judged stronger if 

they are similar to the effect in granularity. In other words, if people are sensitive to the 

proportionality criterion, then causes that are proportional to their effects should receive stronger 

causal judgments. The plot for the proportionality criterion (Figure 2D) displays stronger predicted 

causal judgments on the diagonal representing combinations of causes and effects that are 

proportional in granularity. 

To understand why learners might make stronger causal strength judgments when the cause 

and effect are proportional, consider a scenario in which the cause and effect both have five levels. 

In this scenario, learners could naively map each level of the cause to the corresponding level of 

the effect and interpret that one-to-one mapping as the definition of a positive causal relationship 

(alternatively, they could map the highest level of the cause to the lowest level of the effect, the 

second highest level of the cause to the second lowest level of the effect, and so forth, and interpret 

that as a negative causal relationship). This could make it easier to see how the cause and effect 

are related, and consequently lead to stronger causal strength judgments. In contrast, if the cause 

had two levels and the effect had five levels, it would be harder to map the states of the cause to 

states of the effect, making it more difficult to see how the cause and effect are related, leading to 

weaker causal strength judgments.  
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1.4 Measuring causal strength 

In the present research, I investigate the role of granularity using a common learning paradigm in 

which people learn about the strength of the relationship between a cause and effect by observing 

data of those variables presented sequentially (e.g., Luhmann & Ahn, 2007, 2011; Soo & Rottman, 

2018; Speekenbrink & Shanks, 2010). In some prior experiments using this paradigm, learners are 

asked to make explicit predictions of the effect on each trial based on the observed state of the 

cause (e.g., Derringer & Rottman, 2018; Spellman, 1996). In others experiments, learners do not 

make explicit predictions, although they may make implicit predictions, provided the state of the 

cause is observed prior to the effect on each trial.  

After observing all the data for a particular cause-effect pair, learners make judgments 

about the strength of the causal relationship. In the following sections, I describe the three 

measures I used to investigate learners’ assessments of the causal relationship.  

1.4.1  Measures of the strength of the relationship between the cause and effect 

The target of interest in typical causal learning tasks is the learner’s estimate of the objective 

strength of the relationship between the cause and effect; the correlation between the observed 

states of the cause and effect can be considered the normative benchmark for this estimate.  

I decided to use two different measures of causal strength, reflecting two different views 

of the purpose of regression. One purpose of regression is to assess the strength of a relationship 

between two variables – to measure the “variance explained” and whether the relation is 

statistically significant. Another purpose of regression is to be able to predict the dependent 

variable given the independent variable(s). That is, once the regression model has been fitted to 
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existing data, one can use the fitted parameters to make predictions about new cases. These two 

purposes of regression are mathematically equivalent – the stronger the relationship, the more 

accurate predictions will be, and vice versa. However, they are often spoken of as distinct functions 

of regression and computational models more generally (see Shmueli, 2010). Given that there are 

two ways to think about regression, it was possible that when asking learners for their assessments 

of causal strength, that one of these framings might be easier to understand than the other, or that 

they might be interpreted differently. 

The first measure I used is a traditional measure of causal strength, which is commonly 

used in causal learning experiments (e.g. Cheng, 1997; Cheng & Novick, 1992; Soo & Rottman, 

2018). The causal strength measure typically elicits learners’ estimates of causal strength using a 

Likert scale with the negative end of the scale indicating a very strong negative causal relationship, 

the positive end indicating a very strong positive relationship, and the middle of the scale indicating 

there is no relationship. 

The second measure I used to assess learners’ estimates of causal strength is the extent to 

which learners believe that the cause actually predicts the effect, which I refer to as predictiveness. 

This measure requires learners to assess how well the actual states of the cause seemed to predict 

the actual states of the effect that were observed in the data, ignoring the predictions they may 

have made of the effect during learning (the following section describes a separate measure of how 

accurate learners’ predictions of the effect were). The predictiveness measure elicits learners’ 

estimates of the causal relationship using a Likert scale with the low end of the scale indicating 

the cause is “not predictive” of the effect, and the high end of the scale indicating the cause is 

“very predictive” of the effect. Unlike the causal strength measure, the predictiveness measure 
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only captures the strength of the association while ignoring the polarity of the relationship (positive 

vs. negative). 

1.4.2  A measure of subjective feelings-of-success 

As mentioned above, learners observing sequential data of a cause and effect will often make 

predictions – either explicitly or implicitly – of the effect based on the state of the cause observed 

on each trial. In addition to the measures of objective causal strength described above, another 

relevant quantity when learners are making predictions is the subjective feelings-of-success they 

experience based on the accuracy of their predictions. Whenever learners make predictions about 

the state of the effect, they subsequently see the actual state of the effect, which provides them 

with feedback about their accuracy.  

I introduced the prediction success measure to capture learners’ subjective feelings-of-

success from making predictions of the effect across all trials. This measure elicited learners’ 

subjective feelings-of-success using a Likert scale with the low end of the scale indicating they 

were “not successful” in predicting the effect, and the high end of the scale indicating they were 

“very successful” in predicting the effect. This measure is akin to measurements of task 

performance (see the NASA Task Load Index; Hart & Staveland, 1988).  

In contrast to the measures above that target the objective strength of the relationship (and 

are based on the correlation between the actual states of the cause and effect), the measure of 

prediction success is based on learners’ perceptions of how accurately they predicted the state of 

the effect from the cause. One reason for measuring subjective feelings-of-success was because it 

might be related to learners’ judgments of objective causal strength; in particular, the hypothesis 

that learners use the feelings-of-success heuristic (Section 1.3.2) predicts that subjective feelings-
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of-success might be a mediator of objective causal strength judgments. Measuring prediction 

success allowed the testing of this hypothesis. 

1.4.3  Hypotheses about the influence of granularity on these three measures 

The theories outlined in Section 1.3 predict that learners’ causal strength judgments will be 

influenced by the granularities of the cause and/or effect, when holding the objective causal 

strength constant.  

First, if learners are sensitive to the specificity criterion, they will make stronger judgments 

of objective causal strength (using the causal strength and predictiveness measures) when the 

cause is more fine-grained. It is also possible that fine-grained causes will lead to learners feeling 

that they can more accurately predict the effect, leading to greater subjective feelings-of-success, 

and consequently, judgments of prediction success. 

Second, if learners use the feelings-of-success heuristic, they will make stronger causal 

strength judgments when the effect is more coarse-grained. This prediction applies primarily to 

learners’ judgments of prediction success; learners should experience greater subjective feelings-

of-success when predicting more coarse-grained effects because they are more likely to predict the 

effect’s exact true state. However, I additionally predict that if learners use the feelings-of-success 

heuristic, they will make judgments of objective causal strength based on their subjective feelings-

of-success. Thus, this hypothesis predicts that learners’ judgments using all measures will be 

greater when the effect is more coarse-grained. 

Finally, if learners are sensitive to the proportionality criterion, they will make stronger 

judgments of objective causal strength when the cause and effect possess the same granularities. 

In addition, it is possible that learners will also make greater judgments of prediction success 
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because making predictions between proportional causes and effects may lead to greater subjective 

feelings-of-success because learners can easily map levels of the cause to levels of the effect.  

1.5 Outline of research 

The goal of the present research was to investigate if and how the granularity of the cause and 

effect influence judgments about the strength of the relationship between a cause and effect. Across 

four experiments, participants experienced data of causes and effects in which the strength of the 

causal relationships was fixed. Participants learned the strength of the relationships while making 

predictions of the state of the effect after viewing the actual state of the cause.  

In Experiment 1, I manipulated the granularities of the cause and effect to determine how 

they influenced participants’ causal judgments. In Experiment 2, I investigated whether the 

influence of the granularities of the cause and effect were present when participants either did or 

did not receive an accuracy bonus for their predictions. In Experiment 3, I tested if participants’ 

subjective feelings-of-success mediated the relationship between the granularity of the variables 

and participants’ judgments of the objective strength of the causal relationship; in other words, I 

tested subjective feelings-of-success as a mechanism. In Experiment 4, I further tested the 

mechanism by investigating how the influence of the granularity of the variables was moderated 

by whether or not participants engaged in prediction. 



 

20 

2.0 Experiment 1: The influence of granularity on causal learning 

In Experiment 1, I investigated the role of a cause and effect’s granularity on causal learning. 

Participants learned about causal relationships by observing the states of a cause, and predicting 

the resulting states of an effect. After experiencing the data for a particular cause-effect 

relationship, participants made judgments of causal strength based on their observations. In each 

dataset, the cause and effect had the same objective correlation, but the number of possible levels 

of each variable was manipulated across datasets. The goal of this experiment was to determine if 

the granularity of the cause and/or the effect influenced peoples’ causal judgments. 

Different patterns of results would imply different criteria that people may be sensitive to 

when making causal judgments. If participants’ judgments are stronger when the cause is more 

fine-grained, participants’ judgments would be sensitive to the specificity criterion, i.e. that causes 

with more levels are perceived to be more informative and specific. If participants’ judgments are 

stronger when the effect is more coarse-grained (i.e. has fewer levels), this would be evidence that 

participants were making judgments based on their subjective feeling of how accurately they are 

using the cause to predict the effect, which I call the feelings-of-success heuristic. Finally, if 

participants’ judgments are stronger when the cause and effect have the same number of levels, 

participants’ judgments would be sensitive to the proportionality criterion. The various predictions 

are not mutually exclusive; it is possible that participants will be sensitive to multiple criteria. 
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2.1 Method 

2.1.1  Participants 

120 participants were recruited using Amazon Mechanical Turk (Mturk). Data from one 

participant was not recorded due to a programming error. All participants lived within the United 

States, had at least 100 approved assignments on Mturk, and had an assignment approval rate of 

at least 95%. Research on online labor markets has found these criteria help ensure high quality 

data in behavioral experiments (Berinsky, Huber, & Lenz, 2012; Buhrmester, Kwang, & Gosling, 

2011; Paolacci & Chandler, 2014). Each participant was paid $2.00, and an additional accuracy 

bonus (M = $1.07, SD = $0.10) based on their performance in the trial-by-trial prediction task. The 

experiment lasted approximately 12-15 minutes.  

2.1.2  Design 

The experiment utilized a 3 (number of levels in the cause: 2 vs. 5 vs. 13; within-subjects) × 3 

(number of levels in the effect: 2 vs. 5 vs. 13; within-subjects) × 3 (measure: causal strength vs. 

predictiveness vs. prediction success; between-subjects) design. The number of levels in the cause 

and effect (LevelsC and LevelsE, respectively) were manipulated by varying the number of levels 

that each variable could take on in a particular dataset observed by participants, resulting in nine 

scenarios per participant. The measure denotes the particular response scale participants used to 

make their judgments at the end of each scenario. Forty participants were assigned to each 

between-subjects condition. 
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2.1.3  Datasets 

In each scenario, participants viewed a dataset consisting of 20 joint observations of a cause and 

effect. Each variable could take on values ranging from one to the number of levels of that variable 

(LevelsC and LevelsE). The correlation (Pearson’s r) between the cause and effect in all datasets 

was fixed to be within a small range, so that r = .60 ± .01.  

I created datasets via the following processes. Datasets in which the cause and effect were 

both binary (i.e. LevelsC = LevelsE = 2) always had the same 20 joint states (Table 1) so that the 

association between the variables was fixed at r = .60.4 Two hundred unique datasets were created 

for this condition by randomizing the order of observations for this dataset. 

 

Table 1. Frequencies of Joint States in Datasets with Binary Variables 

  State of effect, E 

  E = 1 E = 2 

State of cause, C C = 1 8 2 

C = 2 2 8 

Note. The absolute states of “1” and “2” are arbitrary, but are meant to imply the smallest vs. largest possible state 

given a particular variable’s scale. 

 

In all other conditions, the following process was used to generate the datasets. Using the 

MASS package in R (Venables & Ripley, 2002), I generated datasets consisting of 20 observations 

of two continuous variables, with r = .60. I then created multiple versions of each dataset by 

                                                 

4 Since the variables are binary, r is equivalent to the phi coefficient (φ = .60). 
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discretizing the values of each variable into two, five, or 13 levels.5 After discretization, datasets 

in which the correlation between variables was r = .60 ± .01 were retained to be used as stimuli.6 

Datasets were generated until 200 unique datasets in each condition were obtained. 

I created a copy of each dataset in which the states of the cause were reverse-coded along 

the midpoint of the scale. This resulted in datasets for which the correlation between variables was 

negative (r = -.60 ± .01). This was done so that participants were not always viewing data with the 

same moderately strong positive correlation, which might have been predictable and boring. Using 

datasets with varying correlations would also help distract from the main manipulation of the 

granularities of the cause and effect. 

                                                 

5 A two-level (binary) variable is the most coarse-grained variable possible. I considered 13 levels to be fine-

grained enough that for practical purposes it was close enough to a continuous variable. A five-level variable was 

somewhere between these extremes, although closer to a two-level variable. This was chosen because people were 

likely more sensitive to granularity at the low end of the scale; the influence of granularity necessarily tapers off at 

the high end of the scale as the granularity increases to the point that people perceive the variable as continuous. The 

chosen granularities were meant to capture important points on the scale. Furthermore, the possible granularities of 

the cause and effect were not multiples or factors of each other (two, five, and 13 levels) to ensure that the states of 

the cause and effect could not be easily mapped onto each other when the granularities differed.  
6 There was a second criterion for a dataset to be retained as stimuli. The relationship between both variables 

had to be linear, rather than a higher-order polynomial relationship. Appendix A contains details of how this was 

assessed in all datasets. 
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2.1.4  Procedure and cover story 

At the start of the experiment, participants were given instructions on navigating the experiment 

website and completed a guided tutorial of one scenario before viewing the actual scenarios.  

Participants were told they were researchers studying how drugs influenced the levels of 

enzymes in peoples’ bloodstreams. Each scenario involved learning about the relationship between 

one particular drug (the cause) and one particular enzyme (the effect), and subsequent scenarios 

involved different drug-enzyme pairs. Participants were told that if the drug had a positive 

(negative) causal influence on the enzyme, being administered a low dosage of the drug would 

result in low (high) levels of the enzyme, an average dosage would result in average levels of the 

enzyme, and a high dosage would result in high (low) levels of the enzyme. Participants were also 

told it was possible a drug had no causal influence on the enzyme, in which case particular dosages 

would not reliably lead to particular levels of the enzyme. These descriptions of the relationship 

were meant to imply a linear relation between the cause and effect. 

To learn the relationship between a drug-enzyme pair, participants observed data from a 

clinical trial in which 20 volunteers were administered different dosages of the drug, and then had 

the level of the enzyme measured in their blood. Each volunteer’s drug dosage and corresponding 

enzyme level constituted a single observation in the dataset.  

The states of the drug and enzyme were represented using two vertical gauges with varying 

numbers of regions depending on LevelsC and LevelsE (see Figure 3); the lowest region on the 

gauge indicates the lowest state. The cause (effect) was represented by the gauge on the left (right). 

The state of a variable on a given trial was indicated by filling the corresponding region light blue. 
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Figure 3. Presentation of stimuli in Experiment 1. In this condition, LevelsC = 13 and LevelsE = 5. (A) After 

being shown the state of the cause (indicated by the light blue region in the gauge representing the cause), the 

participant predicts the state of the effect by clicking on a region in the gauge representing the effect, which 

flashes gray. (B) The correct state of the effect is revealed, and the points won for the participant’s prediction 

(2.21) is displayed and added to the “Total points” above, which keeps track of all points won during the 

experiment. The newly visible button below the stimuli allows participants to advance to the next trial. 
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Participants were told that the granularity of a particular variable reflected the sensitivity 

of the test used to measure that variable – i.e. a sensitive test meant that fine-grained distinctions 

could be made between the states of that variable, corresponding to gauges with more levels. 

During each scenario, participants learned about the relationship between the cause and 

effect by engaging in a trial-by-trial prediction task. On each trial, after clicking on a button to 

display the observation for that particular trial, participants were first shown the state of the cause; 

a particular region of the gauge on the left was shaded light blue. Participants then had to predict 

the corresponding state of the effect by clicking on a particular region of the gauge on the right, 

which flashed briefly. After making their prediction, the actual state of the effect was shown; the 

region of the gauge corresponding to the correct state of the effect was shaded light blue. 

Participants were then awarded a bonus based on the accuracy of their prediction (Section 2.1.5). 

The bonus for that trial was flashed briefly on the right-hand side of the stimuli and then added to 

the experiment-long bonus total above the stimuli (see Figure 3).  

After experiencing all 20 observations, participants made a judgment concerning the entire 

dataset using one of the measures (described in Section 2.1.6). Participants then progressed to the 

following scenario, until they experienced all nine scenarios. 

2.1.5  Accuracy bonus 

After predicting the effect, in addition to being shown the true level of the effect, participants were 

also given a bonus based on the accuracy of their prediction (Figure 3B). On each trial, participants 

were awarded between 0.00 and 10.00 points. At the end of the experiment, participants were paid 

one cent for every 10 points (rounded down), in addition to their base payment. Participants were 

told of this bonus payment rate prior to starting the experiment. 
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Accuracy bonuses were awarded for two reasons. First, providing bonuses would 

presumably motivate participants to pay attention, learn the relation between the cause and the 

effect, and provide accurate predictions. Second, I was concerned that participants might adopt a 

misconceived notion of prediction accuracy. In particular, imagine if a participant only counted a 

prediction as being accurate if they predicted the exactly correct region, and they counted a close 

prediction as wrong. Such a notion of prediction accuracy would mean that when the effect only 

has two levels, participants would often get the prediction exactly correct, but when it has 13 levels, 

they would rarely predict the exact effect. I wanted to use a bonus scheme that encouraged subjects 

to internally measure prediction success in a way that is consistent with how the stimuli were 

created – linear regression – to ensure that the conditions are in fact comparable. Below, I explain 

how the bonuses were determined. 

First, I standardized the cause and effect variables in all datasets across all conditions to 

put them on the same scale. Second, within each condition, I fitted regression models to each of 

the 200 dataset. Third, I used the regression parameters to predict the effect from the cause. Fourth, 

because these predictions do not fall exactly onto one of the levels of the effect variable, I rounded 

these predictions to the closest level of the effect. Fifth, for each prediction, I computed the squared 

error between the rounded prediction and the actual effect. Because this is on the standardized 

scale, I call this error the “standardized squared error” (SEStd). Sixth, I also recorded the raw error 

of that prediction if the standardized predictions were transposed back to their original scale, and 

took the average SEStd that corresponds with 0, 1, 2, etc., levels of error on the raw scale (2, 5, or 

13). Table 2 displays how raw prediction errors are associated with different levels of SEStd for all 

nine conditions. Now, when the effect only has two levels, a raw error of one is associated with a 
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large SEStd but when the effect has five or 13 levels, a raw error of one is associated with a much 

smaller SEStd. 

 

Table 2. Accuracy Bonus Scoring Scheme 

 LevelsC = 2 LevelsC = 5 LevelsC = 13 
Raw error Mean SEStd Points Mean SEStd Points Mean SEStd Points 

LevelsE = 2 
0 0.15 8.50 0.27 8.50 0.27 8.50 
1 2.43 0.00 1.8 0.00 1.79 0.00 

LevelsE = 5 
0 0.04 9.58 0.04 9.58 0.04 9.58 
1 0.51 6.61 0.51 6.64 0.50 6.67 
2 1.69 3.72 1.74 3.65 1.74 3.65 
3 3.42 2.26 3.49 2.23 3.53 2.21 
4 – 0.00 – 0.00 5.47 1.55 

LevelsE = 13 
0 0.01 9.94 0.01 9.94 0.01 9.94 
1 0.07 9.31 0.08 9.29 0.08 9.29 
2 0.28 7.80 0.29 7.78 0.28 7.81 
3 0.63 6.14 0.62 6.17 0.62 6.18 
4 1.09 4.79 1.10 4.76 1.10 4.77 
5 1.71 3.69 1.69 3.72 1.69 3.72 
6 2.38 2.96 2.42 2.92 2.41 2.93 
7 3.19 2.39 3.23 2.36 3.26 2.35 
8 4.35 1.87 3.75 2.11 3.99 2.00 
9 4.82 1.72 5.02 1.66 5.00 1.67 

10 – 0.00 – 0.00 – 0.00 
11 – 0.00 – 0.00 – 0.00 
12 – 0.00 – 0.00 – 0.00 

Note. SEStd from regressions are computed based on averaging predictions from all 200 datasets that correspond to 

different levels of raw prediction errors. In some conditions, some large raw errors are awarded zero points because 

the regressions never made predictions with that amount of SEStd for any datasets. 

 

The last step was to determine how to convert the SEStd into a bonus. I decided to award 

bonuses that could range from 0 to 10.00 points, based on the following equation:  

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 =
10.00

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 1)
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I wanted to verify that the bonuses earned would be roughly equivalent across all of the 

conditions assuming that participants performed equally well across conditions, so I computed the 

sum of the bonus that would be earned using linear regression to predict the outcomes. Most of the 

nine conditions had very similar expected bonuses; however, the condition with only two levels in 

both the cause and the effect was unique in that it had expected bonuses at the high range of the 

other conditions. (This arises because even though standardizing the variables means that they 

technically have the same variance, the distribution of a binary variable is inherently different from 

the distribution of multi-level variables.) I was concerned that participants in this condition might 

obtain slightly higher than average bonuses, which could subsequently make them feel as if they 

performed better and influence their final judgments. This would be especially problematic for 

testing the feelings-of-success heuristic, as it also predicts stronger judgments when the effect has 

fewer levels.  

Another concern with the equation above when the effect only had two levels was that it 

resulted in a bonus that was greater than zero if the prediction was incorrect. It felt odd to have a 

non-zero bonus when choosing the wrong option out of only two options. 

To fix both of these problems, I sought a bonus value for situations in which the effect only 

has two levels such that a wrong prediction would receive a bonus of zero points, and I examined 

different possible bonuses for a correct prediction. There was no way to get the distribution of the 

expected bonuses to match exactly across all conditions, but I eventually settled on 8.5 points for 

a correct prediction. This bonus produced expected total bonuses for conditions in which LevelsE 

= 2 that were close to, but slightly lower than for conditions in which LevelsE = 5 and 13. This 

bonus now sets up a conservative test of the feelings-of-success heuristic. 
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In summary, the bonus scheme was set up to encourage participants to adopt a metric of 

accuracy analogous to how linear regression works, and was designed so that the average bonuses 

participants obtained should be roughly equivalent across all conditions. Because it was not 

possible to make the average bonuses exactly the same across conditions, the bonuses for 

conditions in which the effect had two levels were slightly lower to set up a conservative test of 

the feelings-of-success heuristic. Although it would be ideal if the bonuses could be viewed as a 

true and objective measure of accuracy in the prediction task, for all the reasons mentioned above 

it appears to be very challenging to have a perfect measure of prediction accuracy that is equivalent 

across conditions; bonuses can be viewed as a rough measure of accuracy. 

2.1.6  Measures of causal strength 

After making predictions on all trials for a given scenario, participants made judgments concerning 

the entire dataset they had just experienced. Each participant made judgments using one of the 

three measures discussed in Section 1.4. Table 3 displays the prompts and response scales 

corresponding to each of these three measures. 
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Table 3. Measures Used in Experiments 

Construct Measure Prompt Level and label 

Objective strength Causal strength What is the causal relationship 

between [drug] and [enzyme]? 

5 High levels of [drug] strongly 

cause low levels of [enzyme] 

0 No causal relationship 

-5* High levels of [drug] strongly 

cause high levels of [enzyme] 

Predictiveness How well does the dosage of [drug] 

predict the level of [enzyme]? 

7 Very predictive 

1 Not predictive 

Subjective 

feelings-of-success 

Prediction 

success 

How successful were you in 

predicting the level of [enzyme]? 

7 Very successful 

1 Not successful 

Note. Within each scenario, the name of a drug is displayed in place of [drug] and the name of an enzyme is displayed 

in place of [enzyme]. *All analyses in this paper use the absolute value of the causal strength measure so that they can 

be easily compared to analyses of the other two measures.   

2.2 Results 

The outline of the results section is as follows. First, I will present data pertaining to participants’ 

accuracy on the trial-by-trial prediction across conditions. Second, I test if participants’ judgments 

are based on the specificity criterion, the subjective feelings-of-success heuristic, or the 

proportionality criterion. To do so, I analyzed participants’ judgments on each of the measures, to 

determine if there were influences from the granularities of the cause and effect, as well as 

differences between proportional vs. non-proportional conditions. I conducted these analyses both 

with and without controlling for the bonus points participants won on a particular scenario. 
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2.2.1  Prediction accuracy 

How well participants performed in the trial-by-trial prediction task was not the main focus of the 

experiment, but was measured for two reasons. First, I wanted to ensure that participants were 

properly learning about the causal relationships in the datasets. If they were attending to the 

observations and learning more about the relationship as they experienced more trials, their 

predictions should get more accurate with increasing trials. I reported participants’ trial-level 

prediction accuracy in Appendix B. Participants appeared to be increasingly accurate in predicting 

the state of the effect from the cause over time. 

The second reason to measure prediction accuracy was to ensure the difficulty of the 

prediction task was comparable across conditions with different granularities in the cause and 

effect. The accuracy bonus scoring scheme was designed such that participants should obtain 

roughly equal accuracy (and bonuses) across all conditions, and if there is any difference, that 

participants would obtain higher bonuses for conditions with more levels in the effect. The total 

bonus points won by participants for each scenario are displayed in Figure 4. 
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Figure 4. Total bonus points won by participants in each scenario by the granularity of the cause and effect in 

Experiment 1. Triangles represent condition means, and error bars represent standard deviations. Total bonus 

points won for conditions in which LevelsE = 2 are clustered at various levels because participants are awarded 

either zero or 8.50 points for each prediction, leading to total points in multiples of 8.50. 

 

To assess if there were differences in prediction accuracy across conditions, I ran a 

regression predicting the total bonus points won in each scenario from LevelsC and LevelsE, with 

by-subject random slopes for LevelsC and LevelsE to account for repeated measures. There was a 

small but marginally significant effect of LevelsC (B = -0.22, 95% CI [-0.44, -0.01], p = .042, 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2  

= .004, 95% CI [.000, .015]); participants scored slightly more points when the cause had fewer 

levels. There were significant differences in total points across conditions with different LevelsE 

(B = 1.00, 95% CI [0.77, 1.22], p < .001, 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2  = .072, 95% CI [.045, .103]); participants scored 

more points in scenarios in which the effect had more levels. 

Ideally, participants would have obtained comparable bonus totals across all conditions. 

This was not achieved, but it was not problematic because the results showed that participants 

scored fewer points when the effect had fewer levels, which worked against the feelings-of-success 
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hypothesis and provided a more conservative test when analyzing the influence of the granularity 

of the effect. However, since the analysis above revealed differences across conditions, when 

testing the influence of the granularities of the cause and effect, I performed analyses of the raw 

judgments, and also repeated the analyses after controlling for the bonus points won within each 

scenario. 

2.2.2  Testing the specificity criterion, the feelings-of-success heuristic, and the 

proportionality criterion 

If participants were sensitive to the specificity criterion, they would give stronger judgments in 

conditions with more levels in the cause (a positive effect of LevelsC). If participants used the 

feelings-of-success heuristic, they would give stronger judgments in conditions with fewer levels 

of the effect (a negative effect of LevelsE). If participants were sensitive to the proportionality 

criterion, they would give stronger judgments in conditions in which the cause and effect had the 

same granularity compared to conditions in which they had differing granularities (a positive effect 

of proportionality). 

All regressions were run using the lme4 package in R (Bates, Mächler, Bolker, & Walker, 

2015). I ran separate regressions for each of the measures (causal strength, predictiveness, and 

prediction success) predicting each from the granularities of the cause and effect (LevelsC and 

LevelsE), and a grouping variable indicating whether a particular condition had proportional vs. 

non-proportional causes and effects. I treated LevelsC and LevelsE as numerical predictors, since I 

was interested in the influence of each along the whole (theoretical) scale of granularity. I treated 

proportionality as a factor using effect codes of -0.5 and +0.5 for each condition.  
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In each regression, I also controlled for the objective causal strength (either r = .60 or -.60) 

by including it as a predictor, and included by-subject random slopes for LevelsC, LevelsE, and 

proportionality. The maximal regression model predicting the measure of prediction success failed 

to converge, so I dropped the correlation between the random slope of proportionality with the 

random slopes for LevelsC and LevelsE (see Barr, Levy, Scheepers, & Tily, 2013).  

I ran a second set of regressions that were identical to the first set, but controlled for the 

total bonus points won in each scenario. In this set, the maximal regression models for the causal 

strength and prediction success measures failed to converge, so I again dropped the correlation 

between the random slope of proportionality and the other predictors. The results for both sets of 

regressions are presented in Table 4.  

 

Table 4. Multivariate Regression Results for Experiment 1 

Predictor 
Not controlling for bonus points  Controlling for bonus points 

B p 𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵𝟐𝟐   B p 𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵𝟐𝟐  
Measure: Causal strength     
LevelsC -0.01 [-0.04, 0.05] .828 .000 [.000, .015]  0.02 [-0.03, 0.06] .424 .002 [.000, .021] 
LevelsE -0.11 [-0.15, -0.07] < .001 .058 [.020, .113]  -0.13 [-0.18, -0.09] < .001 .091 [.043, .154] 
Proportionality 0.07 [-0.34, 0.48] .742 .000 [.000, .016]  0.00 [-0.40, 0.40] .985 .000 [.000, .014] 
Measure: Predictiveness     
LevelsC -0.01 [-0.02, 0.04] .516 .001 [.000, .018]  0.01 [-0.02, 0.04] .440 .001 [.000, .019] 
LevelsE -0.10 [-0.14, -0.07] < .001 .097 [.047, .159]  -0.13 [-0.16, -0.10] < .001 .132 [.075, .200] 
Proportionality 0.39 [0.10, 0.69] .011 .015 [.001, .050]  0.34 [0.06, 0.62] .018 .012 [.000, .044] 
Measure: Prediction success     
LevelsC 0.01 [-0.02, 0.03] .525 .001 [.000, .017]  0.02 [-0.01, 0.04] .131 .004 [.000, .028] 
LevelsE -0.02 [-0.05, 0.01] .206 .005 [.000, .030]  -0.07 [-0.10, -0.04] < .001 .049 [.015, .099] 
Proportionality 0.25 [0.01, 0.50] .047 .007 [.000, .035]  0.14 [-0.09, 0.36] .241 .002 [.000, .023] 

Note. Confidence intervals represent 95% CIs. The reported effects size measure (𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵𝟐𝟐 ) is analogous to partial-R2 in 

that it captures the conditional variance explained by each predictor, specifically for generalized linear mixed models 

(Jaeger, Edwards, Das, & Sen, 2017). 
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Participants’ judgments are plotted in Figures 5 and 6, using the visreg package in R 

(Breheny & Burchett, 2017). Given the random effects structure of the models, the 95% confidence 

intervals had to be computed via simulation using the bootpredictlme4 package in R (Duursma, 

2017). The data in Figures 5 and 6 actually represent judgments after controlling for a set of 

predictors in the model. In Figure 5, the judgments are plotted after controlling for predictors other 

than LevelsC and LevelsE, so that the effect of the two predictors can be visualized. Figure 6 is 

similar, except that judgments are plotted after controlling for predictors other than the grouping 

variable indicating if a condition was proportional or non-proportional. 
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Figure 5. Participants’ judgments by LevelsC and LevelsE after controlling for other predictors in the two sets 

of regression models in Experiment 1. Ribbons indicate 95% CIs. (A) Judgments without controlling for bonus 

points. (B) Judgments after controlling for bonus points. 
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Figure 6. Participants’ judgments for proportional vs. non-proportional conditions after controlling for other 

predictors in the two sets of regression models in Experiment 1. Averages are displayed over raw judgments; 

error bars indicate 95% CIs. (A) Judgments without controlling for bonus points. (B) Judgments after 

controlling for bonus points. 

 

The granularity of the cause (LevelsC) was not a significant predictor of any of the three 

measures. In Figure 5, there are no differences in the lines representing each condition of LevelsC. 

Thus, participants were not sensitive to the specificity criterion.  

In contrast, the granularity of the effect (LevelsE) was a significant predictor of causal 

strength and predictiveness, both before and after controlling for the bonus points won on each 

scenario. The granularity of the effect was also a significant predictor for judgments of prediction 

success, but only after controlling for the bonus points won. Participants made weaker judgments 
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when the effect had more levels, as implied by the negative coefficients for LevelsE in Table 4 and 

the decreasing slopes in Figure 5. 

I had initially predicted that the granularity of the effect would likely have an influence on 

judgments of prediction success, which measured the subjective feelings participants experienced 

when making predictions. However, the fact that the granularity of the effect also had an influence 

on judgments of causal strength and predictiveness was more surprising, as those dependent 

variables measured participants’ assessments of the objective causal strength in the data. This 

finding provides some initial evidence that people use their subjective feelings-of-success for 

estimating the strength of the relation between a cause and effect.  

Judgments of predictiveness were slightly greater in proportional vs. non-proportional 

conditions. However, there were no differences between these conditions in judgments of causal 

strength or prediction success. In sum, participants appear to be partly sensitive to the 

proportionality criterion when judging the predictiveness of a cause, but not when making other 

judgments. 

2.3 Discussion 

More levels in the effect (LevelsE) led to weaker judgments of causal strength, predictiveness, and 

prediction success. It was relatively unsurprising that the prediction success measure, which 

measured participants’ subjective feelings-of-success, was influenced by the granularity of the 

effect; participants may have found the prediction task more difficult (and perceived themselves 

to be less successful) when making predictions of more fine-grained effects because they were less 

likely to predict the exact true state of the effect. However, the measures of causal strength and 
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predictiveness both assessed the objective strength of the causal relationship in each scenario. 

Despite the objective strength across all conditions being fixed at r = ± .60, participants perceived 

the objective strength to be stronger when the effect had fewer levels. 

The influence of the effect’s granularity on all measures is consistent with participants 

making judgments using the feelings-of-success heuristic. Instead of directly assessing the 

objective strength of the causal relationship, participants appear to be making judgments based on 

their experience of using the cause to predict the effect. In other words, participants’ subjective 

feelings-of-success may be bleeding over to influence their perceptions of the objective causal 

relationship. 

The idea that subjective feelings-of-success may influence judgments of objective causal 

strength bears some resemblance to findings that people use subjective feelings as cues to various 

kinds of judgments about more objective quantities (Greifeneder, Bless, & Pham, 2011; 

Oppenheimer, 2008). For example, when people learn new information, their feelings of fluency 

(how easy they felt it was to learn the information) can influence their judgments of how well they 

have actually learned that information (Hertzog et al., 2003; Koriat, 2008). As another example, 

people will defer choices about consumer products when descriptions about them are more difficult 

to read or understand, because the subjective feeling of difficulty when processing or learning the 

information is taken as a cue about the product’s objective value (Novemsky, Dhar, Schwarz, & 

Simonson, 2007). Similarly, in the present experiment, people arrived at indirect estimates of a 

target quantity by substituting a secondary and more easily accessible quantity. The feeling of how 

successful one has been in the prediction task may be used as a cue or substitute for the objective 

strength of the causal relationship. 
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In contrast, the granularity of the cause (LevelsC) did not influence participants’ judgments; 

participants appear insensitive to the specificity criterion, which states that causes that are more 

fine-grained – i.e. have more levels – will be judged as better (in the present context, stronger or 

more predictive).  

A comparison of proportional vs. non-proportional conditions showed that participants 

were at least somewhat sensitive to the proportionality criterion; participants made stronger 

judgments using the predictiveness measure in conditions for which the cause and effect had the 

same number of levels. The proportionality criterion is a normative criterion for determining how 

good a causal explanation is based on its level of granularity (McGrath, 1998; Woodward, 2010; 

Yablo, 1992). In the present experimental task, the predictiveness measure can be viewed as an 

evaluation of how good or useful a cause is for the purpose of predicting the effect. This explains 

why there was an effect of proportionality in the predictiveness but not the causal strength measure 

(after controlling for bonus points). Despite both measures targeting the objective causal strength 

in the data, the causal strength measure elicits a judgment about the degree and polarity (positive 

vs. negative) of the relationship without focusing on the cause’s utility for prediction.  

In sum, the present experiment showed that when learning about a causal relationship, 

people are primarily sensitive to the granularity of the effect, and partly to the proportionality 

between the cause and effect. The findings are consistent with participants using the feelings-of-

success heuristic, and of them being partly sensitive to the proportionality criterion. 
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3.0 Experiment 2: Do bonus points drive feelings-of-success? 

The primary finding from Experiment 1 was that when learning about a causal relationship via a 

trial-by-trial prediction task, participants’ judgments of causal strength, predictiveness, and 

prediction success were influenced by the granularity of the effect. Participants made weaker 

judgments when the effect had fewer levels, even though the objective causal strength was held 

constant. This finding was consistent with the hypothesis that participants made judgments based 

on their subjective feelings-of-success. 

When making predictions of an effect with many levels, participants may have believed 

the prediction task was more difficult because they were less likely to predict the exact state of the 

effect. However, when predicting the state of a fine-grained effect, a prediction with small (as 

opposed to zero) error should count as an accurate prediction. I attempted to encourage participants 

to think about their prediction accuracy in this way by awarding them accuracy bonuses according 

to a scheme that would lead to similar bonus totals across conditions. The bonus points served as 

an external cue to prediction accuracy other than participants’ subjective feelings-of-success. Even 

though the bonus points across conditions indicated that participants were more accurate when the 

effect was fine-grained, and even though I controlled for bonus points when analyzing participants’ 

judgments, participants still made weaker judgments when the effect was more fine-grained. 

A weakness of the design in Experiment 1 was that the bonus points that participants 

obtained in the prediction task varied to some extent across conditions due to both statistical issues 

with equating accuracy across conditions as well as potential differences in participants’ learning 

(see the method and results sections about bonuses in Experiment 1 for details). Although in 

Experiment 1 the influence of the granularity of the effect held with and without controlling for 
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bonus points, I wanted to verify that this finding was not produced by showing participants bonus 

points for each prediction. Learning and making predictions without being awarded bonus points 

is a better analog of learning in real-world settings. 

Thus, in Experiment 2, I tested a condition in which participants were not shown bonus 

points for their predictions, and compared their judgments to a control condition in which they 

received bonus points for each prediction, similar to Experiment 1. 

If the influence of the effect’s granularity in Experiment 1 was driven by the fact that 

participants had an external cue about their prediction accuracy, then the findings from Experiment 

1 might not replicate when the bonus points are not shown to participants. However, if the 

influence of the effect’s granularity was indeed driven by the change in the subjective feelings-of-

success during the prediction task, then the same findings should hold regardless of whether or not 

bonus points are shown to participants. 

3.1 Method 

3.1.1  Participants 

I recruited 240 new participants on Mturk using the same criteria as in Experiment 1. Data from 

one participant was not recorded due to a programming error. Each participant was paid $0.90, 

and an additional accuracy bonus (M = $0.47, SD = $0.04) based on their performance in the trial-

by-trial prediction task. The experiment lasted between 6-8 minutes. 
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3.1.2  Design and procedure 

The design of Experiment 2 was largely similar to the design of Experiment 1. There was a within-

subject manipulation of the number of levels in the cause and effect. However, in this experiment, 

the granularities of the cause and the effect were manipulated so that each variable had either two 

or 13 levels (resulting in four within-subject conditions based on granularity). I eliminated the 

conditions in which the cause or effect had five levels because the results of Experiment 1 revealed 

the influence of the effect’s granularity was strongest when comparing the conditions in which the 

effect had two levels vs. 13 levels. Thus, I retained the conditions that would result in the strongest 

comparison. 

Experiment 2 had a new between-subjects factor; participants either received bonus points 

or no bonus points regarding the accuracy of their predictions on each trial. The bonus condition 

looked identical to Experiment 1, except that instead of displaying a running total of the bonus 

points accrued across the entire experiment, a running total of the bonus points accrued across the 

current scenario was displayed above the stimuli (Figure 7A, compare to Figure 3), while the 

overall total across all prior scenarios was displayed on the upper right corner of the experiment 

screen (it is not visible in Figure 7A). I made this change to further highlight participants’ levels 

of prediction accuracy within each scenario. 
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Figure 7. Presentation of stimuli in Experiment 2 in the bonus condition (A) and the no-bonus condition (B). 

These screen shots display what the screen looks like after a participant has made their prediction; the screen 

now shows the actual level of the effect (Briacityl). 
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In the no-bonus condition, participants were not told about or shown any bonus points 

during the experiment (Figure 7B). However, the points participants would have won (based on 

the scoring scheme) for their predictions in the trial-by-trial prediction task were recorded, and 

participants were awarded a bonus payment based on their total bonus points at the end of the 

experiment for fairness. 

Similar to Experiment 1, participants responded to one of the three measures at the end of 

each scenario, between-subjects. Thus, there were six between-subject conditions, with 40 

participants assigned to each condition. 

3.2 Results 

The plan for analyzing data from Experiment 2 mirrored the analyses of Experiment 1, except that 

I also included results for the no-bonus condition. In Experiment 1, I treated LevelsC and LevelsE 

as numerical predictors; coefficients from regressions representing the strength of these effects 

represented changes in judgments due to single-unit changes in granularity. This made sense when 

considering how granularity across the entire scale could influence participants’ judgments. 

However, in Experiment 2, both LevelsC and LevelsE had two levels (two vs. 13). In the present 

analyses, for ease of interpretation, I treated the effects of LevelsC and LevelsE as factors using 

effect codes of -0.5 and +0.5 for each level, so that coefficients from regressions represented 

differences between conditions.  
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3.2.1  Prediction accuracy 

As in Experiment 1, participants’ prediction accuracy was not the main focus of the analyses, but 

were measured to ensure participants were learning about the causal relationship from the data and 

to measure participants’ performance in the prediction task across conditions. 

The trial-level prediction accuracy of participants is reported in Appendix B. From the trial-

level data, participants appeared to be increasingly accurate in predicting the state of the effect 

from the cause over time, suggesting that they were learning more about the causal relationship 

with more trials. Crucially, this was apparent both in the bonus and no-bonus condition, indicating 

that even without accuracy bonuses for their predictions, participants were still attentive to the 

task. 

The bonus points won by participants for each scenario are displayed in Figure 8. (As a 

reminder, in the no-bonus conditions, participants were only alerted to their total bonus at the end 

of the study, not after each trial.) 
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Figure 8. Bonus points won by participants in each scenario by the granularity of the cause and effect, and 

bonus condition in Experiment 2. Triangles represent means, and error bars represent standard deviations. 

 

To assess the differences in bonus point totals across different conditions, I ran a regression 

predicting the bonus points won in each scenario from LevelsC, LevelsE, the bonus condition, as 

well as two-way interactions between each of LevelsC and LevelsE with the bonus condition. The 

regression included by-subject random slopes for LevelsC and LevelsE to account for repeated 

measures. There was a small but marginally significant effect of LevelsC (B = -3.47, 95% CI [-

6.61, -0.36], p = .030, 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2  = .004, 95% CI [.000, .016]); participants scored more points when the 

cause had fewer levels. There were significant differences in total points across conditions with 
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different LevelsE (B = 7.56, 95% CI [3.96, 11.16], p < .001, 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2  = .019, 95% CI [.006, .040]); 

participants scored more points in scenarios in which the effect had more levels. The patterns of 

findings were similar to Experiment 1; by design, the scoring scheme helped ensure that 

participants scored fewer points in conditions in which the effect had fewer levels (LevelsE = 2), 

which provided a conservative test of the feelings-of-success hypothesis when analyzing the 

influence of the granularity of the effect. 

There were no differences in bonus points between the bonus vs. no-bonus conditions (p = 

.589), and no interaction between LevelsC and the bonus factor (p = .302). However, there was an 

interaction between LevelsE and bonus condition; the influence of LevelsE was greater amongst 

participants in the no-bonus condition (B = 5.45, 95% CI [0.35, 10.55], p = .037, 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2  = .005, 95% 

CI [.000, .018]). Although I did not have specific a priori hypotheses about this, it appears from 

Figure 8 that participants in the no-bonus condition had lower bonuses when the effect only had 

two levels. It is possible that the zero point bonuses when they were wrong in the bonus condition 

spurred them to learn and make predictions a bit better. 

Since the analysis above revealed differences across conditions, when testing the influence 

of the granularities of the cause and effect, I performed analyses of the raw judgments, and for the 

bonus condition also repeated the analyses after controlling for the bonus points won within each 

scenario. 

3.2.2  Testing the specificity criterion, the feelings-of-success heuristic, and the 

proportionality criterion 

In Experiment 1, participants’ judgments were sensitive to the granularity of the effect (LevelsE), 

consistent with them using the feelings-of-success heuristic. However, they were not sensitive to 
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the granularity of the cause (LevelsC), implying they were not sensitive to the specificity criterion. 

There were differences in judgments of predictiveness between proportional and non-proportional 

conditions but not the other measures, indicating partial sensitivity to the proportionality criterion. 

The main purpose of the analyses in this section was to determine if this pattern of findings would 

be replicated even when participants were not shown any bonus points during the prediction task. 

For the bonus and no-bonus conditions separately, I ran regressions for each of the 

measures (causal strength, predictiveness, and prediction success), predicting each from LevelsC 

and LevelsE (treated as factors), and a grouping variable indicating whether a particular condition 

had proportional vs. non-proportional causes and effects. The regressions controlled for the 

objective causal strength of the datasets, and included by-subject random slopes for LevelsC and 

LevelsE to account for repeated measures.7 

For the regressions in the bonus condition, I ran accompanying regressions that were 

identical to the first set, but also controlled for the bonus points won in each scenario. It did not 

make sense to run regressions controlling for the bonus points won per scenario in the no-bonus 

condition, because participants were never shown bonus points as an external cue to their 

prediction accuracy. 

The results of these regressions are presented in Table 5. Figure 9 displays the effects of 

LevelsC and LevelsE on participants’ judgments after controlling for all the other predictors in each 

                                                 

7 For the regression analyses in Experiment 2 and subsequent experiments, I did not include a by-subject 

random slope for proportionality in the regression models because there were insufficient observations to estimate a 

random slope for proportionality in addition to LevelsC and LevelsE. In Experiment 2 and subsequent experiments, 

there were four scenarios per participant. In Experiment 1, there were nine scenarios per participant, which was 

sufficient to estimate the three by-subject random slopes. 
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regression. Figure 10 displays participants’ judgments after controlling for all predictors other than 

the grouping variable indicating if a condition was proportional or non-proportional. 
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Table 5. Multivariate Regression Results for Experiment 2 

Predictor 
No-bonus condition  Bonus condition  Bonus condition (controlling for bonus points) 

B p 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2   B p 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2   B p 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2  
Measure: Causal strength 
LevelsC -0.19 [-0.69, 0.31] .472 .002 [.000, .040]  0.08 [-0.55, 0.70] .812 .000 [.000, .033]  0.19 [-0.40, 0.78] .534 .002 [.000, .040] 
LevelsE -0.92 [-1.48, -0.36] .002 .049 [.005, .131]  -0.87 [-1.56, -0.18] .017 .035 [.001, .110]  -1.27 [-1.93, -0.62]  < .001 .080 [.019, .174] 
Prop. -0.56 [-1.03, -0.08] .023 .019 [.000, .081]  -0.06 [-0.66, 0.54] .851 .000 [.000, .032]  -0.23 [-0.78, 0.32] .421 .003 [.000, .043] 
Measure: Predictiveness 
LevelsC 0.08 [-0.29, 0.45] .675 .001 [.000, .035]  -0.20 [-0.57, 0.17] .294 .004 [.000, .048]  0.00 [-0.32, 0.32] .987 .000 [.000, .031] 
LevelsE -1.32 [-1.79, -0.85] < .001 .176 [.085, .287]  -0.94 [-1.43, -0.45] < .001 .081 [.020, .176]  -1.34 [-1.74, -0.93] < .001 .192 [.098, .304] 
Prop. 0.30 [-0.05, 0.65] .094 .011 [.000, .066]  -0.29 [-0.65, 0.08] .126 .009 [.000, .060]  -0.17 [-0.42, 0.09] .201 .004 [.000, .047] 
Measure: Prediction success 
LevelsC -0.26 [-0.59, 0.07] .152 .007 [.000, .056]  -0.29 [-0.69, 0.11] .157 .012 [.000, .068]  -0.20 [-0.51, 0.11] .216 .007 [.000, .056] 
LevelsE -1.73 [-2.14, -1.32] < .001 .268 [.163, .382]  -0.77 [-1.18, -0.36] < .001 .083 [.021, .178]  -1.07 [-1.46, -0.68] < .001 .173 [.082, .283] 
Prop. 0.37 [0.08, 0.66] .017 .016 [.000, .077]  -0.03 [-0.41, 0.35] .876 .000 [.000, .032]  -0.21 [-0.50, 0.08] .152 .009 [.000, .059] 

Note. Confidence intervals represent 95% CIs. Prop. = Proportionality. 
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Figure 9. Participants’ judgments by LevelsC and LevelsE after controlling for other predictors in the regression 

models in Experiment 2. Averages are displayed over raw judgments; error bars indicate 95% CIs. (A) 

Judgments from no-bonus condition without controlling for bonus points. (B) Judgments from bonus condition 

without controlling for bonus points. (C) Judgments from bonus condition after controlling for bonus points. 
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Figure 10. Participants’ judgments for proportional vs. non-proportional conditions after controlling for other 

predictors in the regression models in Experiment 2. Averages are displayed over raw judgments; error bars 

indicate 95% CIs. (A) Judgments from no-bonus condition without controlling for bonus points. (B) Judgments 

from bonus condition without controlling for bonus points. (C) Judgments from bonus condition after 

controlling for bonus points. 
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3.2.2.1 The influence of LevelsC 

 

Similar to Experiment 1, the granularity of the cause was not a significant predictor of any 

judgments. Crucially, this finding was consistent across both the no-bonus and bonus conditions 

(even after controlling for the total bonus points). Thus, participants were not sensitive to the 

specificity criterion. 

3.2.2.2 The influence of LevelsE 

 

The granularity of the effect was a significant predictor of judgments on all measures. This finding 

was consistent across both the no-bonus and bonus conditions, and also after controlling for the 

total bonus points per scenario in the bonus condition. Participants made weaker judgments when 

the effect had more levels, as implied by the negative coefficients for LevelsE in Table 5 and the 

decreasing slopes in Figure 9. This result was consistent with participants using the feelings-of-

success heuristic to make judgments about the data. Furthermore, since this result held even when 

participants did not receive any bonus points for their prediction accuracy, the result appears to be 

driven by participants’ subjective feelings of prediction accuracy resulting from the granularity of 

the effect, rather than any external cue about their prediction accuracy. 

Although the main purpose of Experiment 2 was to see if the influence of LevelsE would 

be replicated even when participants did not receive any bonus points, I also tested whether 

receiving a bonus after each prediction moderated the influence of LevelsE. I ran separate 

regressions for each measure using data from both conditions, predicting judgments of each of the 

measures from LevelsC, LevelsE, the grouping variable indicating whether a particular condition 

had proportional vs. non-proportional causes and effects, the bonus condition, and the two-way 
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interaction between LevelsE and the bonus condition. The regressions included by-subject random 

slopes for LevelsC and LevelsE to account for repeated measures, and controlled for the objective 

causal strength of the datasets. The interaction term in these regressions compared the influence 

of LevelsE in the bonus vs. no-bonus conditions (analogous to comparing rows A and B in Figure 

9). 

There was no interaction between the granularity of the effect and the bonus condition for 

judgments of causal strength (p = .949) or predictiveness (p = .399). However, the influence of 

the effect’s granularity on judgments of prediction success was more strongly negative when 

participants were not shown bonus points (B = -0.95, 95% CI [-1.53, -0.38], p = .002, 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2  = .030, 

95% CI [.004, .077]). This finding suggested that the accuracy bonus scoring scheme was working 

as intended. The scoring scheme was designed to make the prediction task appear equally difficult 

regardless of the cause and effect’s granularity; without being shown bonus points, participants’ 

subjective feelings-of-success were even more susceptible to differences in the effect’s granularity.  

3.2.2.3 The influence of proportionality 

 

In the bonus condition, there were no differences in judgments between proportional vs. non-

proportional conditions for any of the measures, both before and after controlling for bonus points.  

There were mixed findings regarding the effect of proportionality in the no-bonus condition. In 

line with the proportionality hypothesis, judgments of prediction success were significantly higher 

and judgments of predictiveness were marginally higher in the proportional condition. However, 

contradicting this hypothesis, judgments of causal strength were lower in the proportional 

condition.  
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In summary, the findings regarding proportionality are not reliable across Experiment 1 

and Experiment 2, and they are also not reliable across the bonus vs. no-bonus conditions in 

Experiment 2. Further, it is not clear what is driving these differences, especially across 

experiments. Given the inconsistency of findings, I did not perform analyses to investigate the 

interaction between differences in the proportional vs. non-proportional conditions and the bonus 

condition. 

3.3 Discussion 

Consistent with the findings in Experiment 1, finer granularity in the effect led to weaker 

judgments of causal strength, predictiveness, and prediction success. Crucially, this finding was 

replicated both with and without bonuses.  

When bonus points were not shown, the influence of the effect’s granularity on judgments 

of prediction success became more extreme. This was expected; the purpose of the accuracy bonus 

was to equalize the difficulty of the prediction task across conditions. Without bonus points, 

participants did not have any external cue regarding their accuracy in the prediction task, leading 

to their subjective feelings-of-success being even more susceptible to differences in the effect’s 

granularity. In other words, the consistent findings across the bonus and no-bonus conditions 

implied that participants’ use of the feelings-of-success heuristic was not driven by any potential 

differences in accuracy bonuses. 

So far, across Experiments 1 and 2, participants reliably gave stronger judgments when the 

effect was more coarse-grained, suggesting that participants were using the feelings-of-success 

heuristic. It is also clear that participants are not sensitive to the granularity of the cause, implying 
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that they do not use the specificity criterion. The experiments have been inconsistent with regards 

to the proportionality criterion. Because the feelings-of-success heuristic seems to be by far the 

most reliable effect, the rest of the experiments largely focus on it. 

When considering the feelings-of-success heuristic, the most obvious prediction is that 

participants would give stronger judgments of prediction success when the effect is more coarse-

grained because they are more likely to get the prediction exactly correct. It is less obvious why 

the granularity of the effect has an influence on the causal strength and predictiveness measures; 

normatively, causal strength and predictiveness should only be influenced by the strength of the 

correlation between the cause and effect, which is held constant.  

I am proposing that a fuller understanding of the feelings-of-success heuristic involves 

participants using their subjective feelings (measured by the prediction success measure) to make 

judgments of causal strength and predictiveness. Note that in Experiments 1 and 2, participants 

only made one of the three judgments, so the theory is that participants form feelings about 

prediction success even when they are not asked this question. In Experiment 3, I tested this 

hypothesis with a mediation analysis. 
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4.0 Experiment 3: A mechanism-level account for how granularity influences objective 

causal strength judgments 

The primary finding in Experiments 1 and 2 was that participants’ judgments of objective strength 

and subjective feelings-of-success were weaker when the effect had more levels. When the effect 

had more levels (i.e. was more fine-grained), it was subjectively more difficult to predict the effect 

given the cause, which is consistent with participant’ ratings of subjective feelings-of-success 

(using the prediction success measure). However, normatively, the varying perceived levels of 

difficulty in the trial-by-trial task has no influence on the objective strength of the relationship. 

The goal of the present experiment was to uncover how the granularity of the effect comes to 

influence participants’ judgments of objective strength (captured by the causal strength and 

predictiveness measures). 

One hypothesis, as suggested in the discussion of Experiment 2, is that participants may be 

making indirect estimates of the objective causal strength by substituting a more accessible 

quantity like subjective feelings-of-success, which is influenced by the number of levels in the 

effect. In Experiment 2, the same influence of the number of levels in the effect on participants’ 

judgments was found to hold whether or not participants received an accuracy bonus, indicating 

that participants relied on subjective feelings-of-success regardless of whether there was an 

external cue of their success in the prediction task. 

Based on this hypothesis, Figure 11 presents a conceptual model for a potential mechanism 

by which the number of levels in the effect influences judgments about objective causal strength. 

In this model, subjective feelings-of-success is a potential mediator between the granularity of the 

effect and judgments of objective causal strength. 
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Figure 11. Conceptual model for mediation relationship tested in Experiment 3. 

 

The granularity of the effect influences subjective feelings-of-success because it may 

appear easier to make more accurate predictions when the effect has fewer levels; participants are 

likelier to guess the correct state of the effect by chance when it has two levels compared to 13 

levels. The measure of prediction success is intended to capture the subjective feelings-of-success 

that participants experience when they engage in the prediction task. It is likely that feelings-of-

success arise spontaneously as participants make predictions, even without making judgments of 

prediction success. If they instead are forced to make judgments of the objective strength, they 

may substitute their subjective feelings-of-success from the prediction task instead of properly 

assessing the objective strength. 

In Experiments 1 and 2, subjective feelings-of-success may be viewed as a reasonable 

substitute for objective causal strength if one assumes that stronger causes can be used to more 

accurately predict the effect. Research in other domains have demonstrated that people perform 

analogous “substitutions” of target quantities using more affective and subjective quantities (see 
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Gigerenzer & Goldstein, 2011; Hertzog, Dunlosky, Robinson, & Kidder, 2003; Kahneman & 

Tversky, 1973; Koriat, 2008; Oppenheimer, 2008). The hypothesis in the present context is that 

participants substitute subjective feelings-of-success for their assessments of objective strength. In 

other words, the granularity of the effect may influence judgments of objective strength via 

subjective feelings-of-success as a mechanism. 

The prior experiments were not designed to examine if subjective feelings-of-success was 

a mechanism linking the granularity of the effect with judgments about objective causal strength. 

In Experiments 1 and 2, participants made judgments using only one of the three measures, so a 

mediation analysis could not be performed. In the present experiment, I tested the mechanistic 

model in Figure 11 by having participants make judgments on each scenario using all three 

measures. If the model in Figure 11 is correct, judgments of prediction success should mediate the 

relationship between the granularity of the effect and judgments of causal strength and 

predictiveness. 

4.1 Method 

4.1.1  Participants 

160 new participants were recruited on Mturk using the same criteria as in the prior experiments. 

Each participant was paid $0.90, and an additional accuracy bonus (M = $0.47, SD = $0.04) for 

their performance in the trial-by-trial prediction task. The experiment lasted between six to eight 

minutes. 
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4.1.2  Design and procedure 

The design of Experiment 3 was largely similar to Experiment 2. There was a within-subject 

manipulation of the number of levels in the cause (LevelsC) and effect (LevelsE); each variable had 

either two or 13 levels (resulting in four within-subject conditions).  

In contrast to the prior experiments, in which participants made judgments using only a 

single measure, participants in Experiment 3 made judgments for all three measures (Table 3) at 

the end of each scenario. After the last trial, the first measure became visible below the stimuli. 

Each subsequent measure appeared in turn after participants submitted a judgment for the prior 

measure (they were not permitted to change their prior judgments after viewing the next measure). 

The order of the measures was partially counterbalanced between-subjects. Of the 160 participants, 

40 experienced the measures in each of the four orders shown in Table 6. 

 

 

Table 6. Order of Measures in Experiment 3 

 Order A Order B Order C Order D 

1 Causal strength Predictiveness Predictive success Predictive success 

2 Predictiveness Causal strength Causal strength Predictiveness 

3 Predictive success Predictive success Predictiveness Causal strength 

 

 

Different orders were used to ensure that any potential mediating effect was robust and not 

due only to an order effect. For example, if participants were always asked about the objective 

causal strength first, it is possible this would influence their subsequent judgments on the 
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prediction success measure (rather than participants responding to it based on their experience in 

the trial-by-trial prediction task). 

In orders A and B, the measures of objective causal strength (causal strength and 

predictiveness) were presented before the measure of subjective feelings-of-success (predictive 

success). Between these two orders, the two measures of objective causal strength were 

counterbalanced. In orders C and D, participants were first presented with the measure of 

subjective feelings-of-success, followed by the two measures of objective causal strength 

(counterbalanced). 

4.2 Results 

4.2.1  Prediction accuracy 

As in the prior experiments, participants’ prediction accuracy was not the main focus of the 

analyses reported here, but was measured to ensure participants were properly learning about the 

causal relationships from the data. The trial-level prediction accuracy of participants (reported in 

Appendix B) showed that participants were increasingly accurate in predicting the state of the 

effect from the cause over time. Similar to the prior experiments, participants were learning more 

about the causal relationship with more trials of the prediction task.  

A further reason for measuring participants’ prediction accuracy was to compare their 

performance in the prediction task across conditions. The bonus points won by participants for 

each scenario are displayed in Figure 12. 
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Figure 12. Bonus points won by participants in each scenario by the granularity of the cause and effect in 

Experiment 3. Triangles represent condition means, and error bars represent standard deviations. 

 

To assess if there were differences in prediction accuracy at the scenario-level, a regression 

was run predicting the total bonus points won in each scenario from LevelsC and LevelsE, with by-

subject random slopes for LevelsC and LevelsE to account for repeated measures. There was a small 

but significant effect of LevelsC (B = -3.96, 95% CI [-6.42, -1.50], p = .002, 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2  = .013, 95% CI 

[.001, .036]); participants scored slightly more points when the cause had fewer levels. There were 

significant differences in total points across conditions with different LevelsE (B = 11.46, 95% CI 

[8.62, 14.30], p < .001, 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2 = .099, 95% CI [.060, .146]); participants scored more points when 

the effect had more levels. 

Similar to Experiments 1 and 2, the observed differences in bonus points won per scenario 

were in the intended direction. Because there were differences across conditions, when assessing 

the influence that the granularity of the cause and effect has on judgments, I performed analyses 

of both the raw judgments and also repeated the analyses after controlling for the bonus points. In 

addition, I controlled for the bonus points won within each scenario in the mediation analysis. 



 

65 

4.2.2  Testing the specificity criterion, the feelings-of-success heuristic, and the 

proportionality criterion 

To recap, if participants were sensitive to the specificity criterion, their judgments would be 

sensitive to the granularity of the cause (LevelsC). If participants used the feelings-of-success 

heuristic, their judgments would be sensitive to the granularity of the effect (LevelsE). If 

participants were sensitive to the proportionality criterion, their judgments would be greater in 

proportional conditions compared to non-proportional conditions. 

First, I ran regressions for each of the measures (causal strength, predictiveness, and 

prediction success), predicting each from LevelsC and LevelsE (treated as factors), and the 

grouping variable indicating proportionality. The regressions controlled for the objective causal 

strength of the datasets, and included by-subject random slopes for LevelsC and LevelsE to account 

for repeated measures. Next, I ran a second set of regressions that were identical to the first set, 

but controlled for the total bonus points won in each scenario.  

The results for both sets of regressions are presented in Table 7. Figure 13 displays 

participants’ judgments after controlling for predictors in each regression model other than LevelsC 

and LevelsE. Figure 14 displays participants’ judgments after controlling for all predictors other 

than the grouping variable indicating if a condition was proportional or non-proportional. 
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Table 7. Multivariate Regression Results for Experiment 3 

Predictor 
Not controlling for bonus points  Controlling for bonus points 

B p 𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵𝟐𝟐   B p 𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵𝟐𝟐  
Measure: Causal strength     
LevelsC -0.52 [-0.83, -0.22] .001 .015 [.002, .039]  -0.19 [-0.33, -0.05] .008 .006 [.000, .023] 
LevelsE -0.76 [-1.09, -0.44] < .001 .031 [.010, .062]  -1.30 [-1.48, -1.11] < .001 .197 [.147, .251] 
Proportionality 0.29 [-0.02, 0.59] .065 .004 [.000, .021]  0.06 [-0.08, 0.21] .380 .001 [.000, .011] 
Measure: Predictiveness     
LevelsC -0.20 [-0.40, -0.01] .044 .005 [.000, .022]  -0.04 [-0.22, 0.13] .619 .000 [.000, .009] 
LevelsE -0.96 [-1.20, -0.72] < .001 .102 [.062, .149]  -1.39 [-1.60, -1.18] < .001 .200 [.150, .255] 
Proportionality 0.20 [0.01, 0.40] .043 .005 [.000, .022]  0.02 [-0.15, 0.19] .837 .000 [.000, .008] 
Measure: Prediction success     
LevelsC -0.35 [-0.52, -0.18] < .001 .016 [.003, .041]  -0.38 [-0.69, -0.08] .013 .009 [.000, .028] 
LevelsE -0.88 [-1.09, -0.66] < .001 .095 [.056, .140]  -1.13 [-1.47, -0.80] < .001 .064 [.032, .104] 
Proportionality 0.25 [0.08, 0.41] .005 .008 [.000, .027]  0.13 [-0.17, 0.43] .413 .001 [.000, .012] 

Note. Confidence intervals represent 95% CIs. 

 

 

Figure 13. Participants’ judgments by LevelsC and LevelsE after controlling for other predictors in the two sets 

of regression models in Experiment 3. Averages are displayed over raw judgments; error bars indicate 95% 

CIs. . (A) Judgments without controlling for bonus points. (B) Judgments after controlling for bonus points. 
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Figure 14. Participants’ judgments for proportional vs. non-proportional conditions after controlling for other 

predictors in the two sets of regression models in Experiment 3. Averages are displayed over raw judgments; 

error bars indicate 95% CIs. (A) Judgments without controlling for bonus points. (B) Judgments after 

controlling for bonus points. 

 

Similar to both Experiments 1 and 2, the granularity of the effect was a significant predictor 

of judgments on all measures, both before and after controlling for the bonus points won per 

scenario. Participants made weaker judgments when the effect had more levels, as implied by the 

negative coefficients for LevelsE in Table 7 and the decreasing slopes in Figure 13. This result was 

consistent with participants using the feelings-of-success heuristic to make judgments about the 

data. 
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Unlike in the prior experiments, in the regressions that did not control for bonus points, 

participants made weaker judgments on all measures when the cause had more levels. After 

controlling for bonus points, the influence of the cause’s granularity on judgments of 

predictiveness became non-significant, while they remained significant for judgments of causal 

strength and prediction success. The influence of the cause’s granularity was the opposite of what 

was predicted by the specificity criterion; participants gave stronger ratings for more coarse-

grained causes. Despite these results diverging results from prior experiments, relative to the 

influence of the granularity of the effect, the effect sizes for LevelsC were very small (accounting 

for less than 1% of unique variance after controlling for prediction accuracy). In contrast, the effect 

sizes for LevelsE were substantially larger. 

Before controlling for bonus points, participants made greater judgments of prediction 

success, and marginally greater judgments of causal strength and predictiveness in the 

proportional vs. non-proportional conditions. However, after controlling for bonus points, there 

were no differences between the conditions for all measures. Again, there was no clear pattern 

indicating that participants were sensitive to the proportionality criterion. 

4.2.3  Mediation analysis testing subjective feelings-of-success as a mechanism 

To test whether subjective feelings-of-success served as a mechanism for how the granularity of 

the effect influenced judgments of objective causal strength, I conducted a mediation analysis 

using the mediation package in R (Tingley, Yamamoto, Hirose, & Keele, 2014). This package 

allowed mediation analyses in repeated measures designs involving regressions with random 

slopes and intercepts. This analysis was conducted by fitting regression models between LevelsE 

and the mediator (prediction success judgments), and between LevelsE and the outcome variable 



 

69 

of interest (either causal strength or predictiveness judgments) after controlling for the mediator. 

Each of these regressions also controlled for LevelsC, proportionality, the objective causal strength, 

and the bonus points won per scenario. Each regression also included by-subject random slopes 

for LevelsC and LevelsE to account for repeated measures.  

First, I investigated whether participants’ judgments of prediction success mediated the 

relationship between LevelsE and judgments of causal strength. There was a significant average 

causal mediation effect, which meant that the entire pathway from LevelsE through judgments of 

prediction success to judgments of causal strength was significant (ACME = -0.54, 95% CI [-

0.74, -0.36], p < .001). There was also a significant average direct effect (ADE = -0.60, 95% CI [-

0.97, -0.24], p < .001) from LevelsE to judgments of causal strength.  

Second, I analyzed whether participants’ judgments of prediction success mediated the 

relationship between LevelsE and judgments of predictiveness. Again, there was a significant 

average causal mediation effect (ACME = -0.93, 95% CI [-1.10, -0.78], p < .001), as well as a 

significant average direct effect (ADE = -0.44, 95% CI [-0.63, -0.26], p < .001).  

The results for the mediation analyses (including all order conditions) are displayed in 

Figure 15 to help visualize the effects in terms of the proposed mechanistic model. The negative 

coefficients indicate that for more fine-grained effects, participants made weaker judgments of 

causal strength and predictiveness. 
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Figure 15. Mediation analysis results for the relationship between LevelsE, judgments of prediction success, and 

judgments of causal strength and predictiveness in Experiment 3. All effects are significant at the p < .001 level. 

ACME = Average Causal Mediation Effect. ADE = Average Direct Effect. 

 

To test if the mediation effects reported above were due to any order effects, I repeated the 

analyses above for each order condition (see Table 6). The results of these analyses are presented 

in Table 8. 
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Table 8. Results for Mediation Analysis Results by Order Condition in Experiment 3 

Measure Order of measures ACME p  ADE p 

Causal strength 

A Causal strength, predictiveness, prediction success -0.57 [-0.97, -0.23] < .001  -0.30 [-1.15, 0.51] .494 
B Predictiveness, causal strength, prediction success -0.80 [-1.23, -0.40] < .001  -0.18 [-0.92, 0.60] .634 
C Prediction success, causal strength, predictiveness -0.59 [-0.99, -0.20] .004  -0.50 [-1.28, 0.26] .214 
D Prediction success, predictiveness, causal strength -0.33 [-0.70, -0.04] .032  -1.31 [-2.03, -0.58] .002 

Predictiveness 

A Causal strength, predictiveness, prediction success -1.02 [-1.37, -0.66] < .001  -0.27 [-0.59, 0.06] .120 
B Predictiveness, causal strength, prediction success -0.83 [-1.21, -0.49] < .001  -0.29 [-0.70, 0.14] .190 
C Prediction success, causal strength, predictiveness -1.06 [-1.39, -0.75] < .001  -0.58 [-0.99, -0.16] .004 
D Prediction success, predictiveness, causal strength -0.82 [-1.17, -0.50] < .001  -0.59 [-0.94, -0.22]  .002 

Note. ACME = Average Causal Mediation Effect. ADE = Average Direct Effect. Confidence intervals represent 95% CIs. 
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Regardless of the order condition, the average causal mediation effect on both judgments 

of causal strength and predictiveness were significant, or at least marginally significant for 

judgments of causal strength in order condition D.8 These results indicated that the causal 

mediation effects were robust and not due to any particular order in which participants made 

judgments.  

The fact that the causal mediation effects were present even when participants made 

judgments of prediction success last (orders A and B) suggested that participants formed subjective 

feelings-of-success prior to making a judgment about them, and that these feelings influenced the 

judgments of objective strength they made first. The usual strategy in mediation analyses is to 

measure the variables in their causal order, i.e. measuring judgments of prediction success before 

judgments of causal strength and predictiveness. Orders A and B were atypical in that the proposed 

mediator (prediction success) was measured last, but were necessary to demonstrate that subjective 

feelings-or-success were not simply a result of participants being prompted to make judgments of 

prediction success.  

In sum, the mediation results show that the relationship between the granularity of the 

effect and participants’ estimates of the objective strength in the data was at least partially mediated 

by participants’ levels of subjective feelings-of-success. In contrast, while the average direct 

effects were significant when collapsing across all order conditions, the effects were not robust to 

the order of measures that participants made judgments for.  

                                                 

8 The separate mediation analyses for each order involved only 40 participants per condition, so it is 

unsurprising that there was some variation across the different orders. 
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4.3 Discussion 

In Experiment 3, both the granularity of the cause and effect influenced participants’ judgments 

on all measures. However, as before, the dominant influence on participants’ judgments was from 

the granularity of the effect; participants made stronger judgments in conditions with more coarse-

grained effects.  

The granularity of the effect has a bearing on how easy or difficult the prediction task feels 

to participants; when making predictions of a coarse-grained effect it feels more difficult to make 

an accurate prediction, leading to lower subjective feelings-of-success. I proposed that the 

subjective feelings-of-success (captured by the prediction success measure) might serve as a 

mechanism for the relationship between the granularity of the effect and judgments of objective 

strength. Results from the mediation analyses revealed that judgments of prediction success indeed 

significantly mediated the relationships between the granularity of the effect on one hand, and 

judgments of causal strength and predictiveness on the other.  

The mediation effects were present regardless of the order of measures. Beyond 

demonstrating the robustness of the effects, the findings shed further light on the nature of 

subjective feelings-of-success as a mechanism. The fact that the causal mediation effects were 

present even when participants made judgments of prediction success last suggested that 

participants formed subjective feelings-of-success prior to making a judgment about them, and 

that these feelings influenced their judgments of objective strength. In other words, subjective 

feelings-of-success arise spontaneously when participants engaged in the trial-by-trial prediction 

task, and not simply as a result of responding on the prediction success measure. 
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Identifying subjective feelings-of-success as a mechanism helps to explain why judgments 

of objective strength varied with the manipulation of the granularity of the effect, despite the actual 

strength between the cause and effect being fixed in the datasets participants experienced.  

The significant direct effects in some order conditions suggest further mechanisms (other 

than subjective feelings-of-success that they got from accurate predictions) that mediate 

participants’ judgments of the objective strength. One plausible mechanism is that when 

participants obtained higher bonuses, they felt that they were better able to predict the effect and 

that the causal relation was stronger. In fact, performing the same mediation analyses but using 

the bonus points won per-scenario instead of judgments of prediction success as a mediator 

revealed significant causal mediation effects on both causal strength and predictiveness (p’s < 

.001). Both mechanisms (subjective feelings-of-success and bonus points) are consistent with the 

notion that participants made judgments of a relatively inaccessible quantity (objective strength) 

by substituting a more easily accessible one.  

There are a couple of reasons why participants may substitute subjective feelings-of-

success for judgments of objective strength. First, subjective feelings-of-success may be accessible 

because they are tied to the ongoing experience of the trial-by-trial prediction task. On each trial, 

participants have a sense of their prediction accuracy (via subjective feelings-of-success and the 

bonus points) which can be updated on each trial. In contrast, it is more difficult for participants 

to assess the objective strength (either in terms of causal strength or predictiveness), as it requires 

attending to the actual states of the cause and effect across all trials while ignoring the predictions 

they made. It is also possible that participants do not fully attend to or remember the actual states 

of the effect, focusing instead on the states they predicted. 
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A second reason participants may substitute subjective feelings-of-success for judgments 

of objective strength is that it may be useful in many situations to do so. Subjective feelings-of-

success may serve as a sensible cue of objective strength because stronger (and better) causes 

should intuitively allow better success in the prediction task. Thus, if participants experienced 

greater subjective feelings-of-success, they may have reasoned that it was due to greater strength 

in the causal relationship. 

In sum, participants’ subjective feelings-of-success that arose due to the prediction task 

served as a substitute for judgments of objective strength. While this substitution may prove useful 

in many contexts due to the intuitive relation between ease of prediction and the strength of a 

cause, it can lead to errors when subjective feelings-of-success are artificially influenced by the 

granularity of the effect. 
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5.0 Experiment 4: How the act of prediction moderates the influence of granularity 

The novel finding in Experiment 3 was that subjective feelings-of-success mediated the 

relationship between the granularity of the effect and judgments of the objective strength of a 

causal relationship. This finding supported the theory that participants assessed objective strength 

(measured via judgments causal strength and predictiveness) by substituting a more accessible 

quantity like subjective feelings-of-success (measured via judgments of prediction success). 

Subjective feelings-of-success may be more accessible because participants derive it from their 

experience of using the cause to predict the effect throughout the scenario. 

In Experiment 4, I investigated the source of participants’ subjective feelings-of-success. 

The findings from Experiments 1-3 are consistent with the hypothesis that participants’ judgments 

are driven by their subjective feelings-of-success; when the effect is coarse-grained, participants 

might feel they are performing well in the prediction task because there is a higher chance of 

predicting the correct state of the effect by chance. Thus, the influence of granularity likely arises 

because participants are engaging in the act of prediction, using variables that have differing 

numbers of levels.  

The present experiment investigates if making explicit predictions is necessary for 

participants to experience subjective feelings-of-success. In Experiments 1–3, the trial-by-trial 

prediction task forced participants to make predictions of the effect. However, research across 

various domains of cognition reveals that people automatically engage in prediction – when given 

information about some variable, people make unprompted predictions about related quantities 

(e.g., Nisbett & Borgida, 1975; Sebanz & Knoblich, 2009; Tversky & Kahneman, 1983). It is 

possible that the tendency people have to formulate predictions will lead to them making 
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predictions even when not explicitly forced to. If so, participants’ causal judgments could be 

influenced by the granularity of the effect even when participants do not explicitly predict the state 

of the effect from the cause.  

To understand the role of the trial-by-trial prediction task in producing participants’ 

subjective feelings-of-success, I tested whether or not the influence of the effect’s granularity 

would influence participants’ judgments of objective strength across three learning paradigms. In 

one paradigm (used in Experiments 1-3), participants make an explicit prediction of the effect. In 

a second paradigm, participants do not make an explicit prediction, but likely still make predictions 

after seeing the effect. In the third paradigm, participants see the cause and effect simultaneously, 

so they cannot make a prediction. If the granularity of the effect influences participants’ judgments 

mainly through the explicit process of prediction, then the effect would only hold for the first 

condition. Alternatively, it might be strongest when making explicit predictions, weaker when the 

task allows for but does not require predictions, and weakest when the task prohibits predictions. 

Lastly, if the influence of granularity of the effect is due to some other process, then it could hold 

for all three conditions. 

5.1 Method 

5.1.1  Participants 

240 new participants were recruited on Mturk using the same criteria as in the prior experiments. 

Each participant was paid $0.90; there were no accuracy bonuses. The experiment lasted between 

six to eight minutes. 
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5.1.2  Design and procedure 

Similar to Experiments 2 and 3, the present experiment utilized a within-subject manipulation of 

the number of levels in the cause (LevelsC) and effect (LevelsE); each variable had either two or 

13 levels (resulting in four within-subject conditions).  

In the present experiment, the key manipulation (between-subjects) was the learning 

paradigm by which participants experienced each dataset; prediction task vs. simultaneous 

observation vs. delayed observation. In the prediction task condition, participants learned about 

the cause and effect by engaging in the trial-by-trial prediction task, without receiving bonus points 

(identical to the no-bonus condition in Experiment 2). Participants in the prediction task condition 

were not given bonus points for consistency with the observation conditions, in which participants 

did not make predictions, and therefore received no bonus points.  

In the delayed observation condition, on each trial, the state of the cause was immediately 

revealed, followed by the effect after one second (Figure 16). This allowed time for participants to 

implicitly predict the effect, but did not require them to do so. After viewing each observation, 

participants clicked on a button to advance to the next trial. In many ways, this condition most 

closely aligns with real-world learning, in that causes occur before effects (and usually with some 

delay between them), allowing people to predict the effect. This condition is also somewhat 

analogous to real-world situations in which a person makes an action, which is then followed by 

an outcome, with the difference being that participants do not make a choice in this condition.  
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Figure 16. Presentation of stimuli in the observation conditions in Experiment 4. The actual states of the cause 

and effect are revealed on each trial without participants making any prediction. In the delayed observation 

condition, there was a one-second delay between when the state of the cause was revealed and the state of the 

effect was revealed. 

 

In the simultaneous observation condition, on each trial, the states of the cause and effect 

were revealed simultaneously. After viewing each observation, participants clicked on a button to 

advance to the next trial. In this condition, it is impossible to make a prediction of the effect based 

on the cause. If the influence of the granularity of the effect still arises in this condition, then it 

must not be due exclusively to engaging in the act of prediction. In both the observation conditions, 

the button to advance to the next trial was disabled for two seconds after pressing it.  

Unlike prior experiments, participants in Experiment 4 only made judgments using either 

the causal strength or predictiveness measures. The prediction success measure was omitted 

because it was irrelevant in the observation conditions, in which participants did not make any 
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predictions. For consistency, it was also omitted from the prediction task condition as well. Similar 

to Experiments 1 and 2, the measures were presented between-subjects. In combination with the 

learning format, there were six between-subject conditions, with 40 participants assigned to each 

condition.  

5.2 Results 

5.2.1  Testing the specificity criterion, the feelings-of-success heuristic, and the 

proportionality criterion 

The main purpose of the analyses was to determine if finer granularity in the effect leads to weaker 

judgments of objective strength would be moderated by the learning paradigm. If subjective 

feelings-of-success arise as a result of the prediction task, I expected that similar to prior 

experiments, finer granularity in the effect would lead to weaker judgments in the prediction task 

condition. I predicted that this influence would be attenuated in the simultaneous observation 

condition because participants would not be able to make any predictions due to the actual states 

of the cause and effect being revealed simultaneously. In the delayed observation condition, the 

delay potentially gave participants time to make a spontaneous prediction of the effect after the 

cause was revealed even though the learning task did not elicit a prediction. If participants made 

predictions of the effect spontaneously after viewing the cause, the influence of the effect’s 

granularity in this condition would be similar to the prediction task condition. If participants did 

not make spontaneous predictions, the influence of the effect’s granularity would be similar to the 

simultaneous observation condition. 



 

81 

For each of the three learning paradigm conditions, I ran regressions for each of the 

measures used in this experiment (causal strength and predictiveness) predicting each from 

LevelsC and LevelsE, and a grouping variable indicating whether a particular condition had 

proportional vs. non-proportional causes and effects. The regressions controlled for the objective 

causal strength of the datasets, and included by-subject random slopes for LevelsC and LevelsE to 

account for repeated measures. 

The results of these regressions are presented in Table 9. Figure 17 displays the influence 

of LevelsC and LevelsE on participants’ judgments. Figure 18 displays the influence of 

proportionality on participants’ judgments. 



 

82 

Table 9. Multivariate Regression Results for Experiment 4 

Predictor 
Prediction task  Delayed observation  Simultaneous observation 

B p 𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵𝟐𝟐   B p 𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵𝟐𝟐   B p 𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵𝟐𝟐  
Measure: Causal strength 
LevelsC -0.37 [-0.95, 0.22] .222 .006 [.000, .054]  -0.89 [-1.71, -0.06] .042 .026 [.000, .094]  -0.70 [-1.41, 0.02] .064 .025 [.000, .093] 
LevelsE -0.79 [-1.37, -0.21] .008 .029 [.001, .100]  -0.14 [-0.88, 0.60] .716 .001 [.000, .034]  -0.21 [-0.81, 0.38] .480 .002 [.000, .041] 
Proportionality  0.14 [-0.44, 0.72] .642 .001 [.000, .035]  -0.04 [-0.73, 0.65] .915 .000 [.000, .031]  0.83 [0.25, 1.41] .007 .035 [.001, .109] 
Measure: Predictiveness 
LevelsC -0.31 [-0.69, 0.06] .102 .014 [.000, .071]  -0.41 [-0.87, 0.05] .090 .017 [.000, .079]  -0.32 [-0.72, 0.08] .122 .011 [.000, .066] 
LevelsE -1.96 [-2.41, -1.51] < .001 .353 [.247, .461]  -0.55 [-1.00, -0.10] .019 .032 [.001, .104]  -0.40 [-0.83, 0.03] .077 .018 [.000, .079] 
Proportionality -0.13 [-0.49, 0.23] .469 .003 [.000, .042]  0.21 [-0.23, 0.64] .349 .005 [.000, .049]  0.26 [-0.10, 0.62] .164 .007 [.000, .057] 
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Figure 17. Participants’ judgments by LevelsC and LevelsE after controlling for other predictors in the 

regression models in Experiment 4. Averages are displayed over raw judgments; error bars indicate 95% CIs. 

(A) Judgments from prediction task condition. (B) Judgments from delayed observation condition. (C) 

Judgments from simultaneous observation condition. 
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Figure 18. Participants’ judgments for proportional vs. non-proportional conditions after controlling for other 

predictors in the regression models in Experiment 4. Averages are displayed over raw judgments; error bars 

indicate 95% CIs. (A) Judgments from prediction task condition. (B) Judgments from delayed observation 

condition. (C) Judgments from simultaneous observation condition. 
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5.2.1.1 The influence of LevelsC 

 

Similar to Experiments 1 and 2, the granularity of the cause (LevelsC) was not a significant 

predictor of either objective strength measure in the prediction task condition (Table 9). In the 

delayed observation condition, LevelsC was a marginally significant predictor of judgments of 

causal strength but not of judgments of predictiveness. In the simultaneous observation condition, 

LevelsC was a marginally significant predictor of judgments of causal strength but not of 

predictiveness. For both observation conditions, participants gave slightly stronger ratings of 

causal strength for more coarse-grained causes, which was the opposite of what was predicted by 

the specificity criterion.  

To test if the learning paradigm moderated the influence of LevelsC, I ran separate 

regressions using data from all learning paradigm conditions, predicting each measure of objective 

strength from LevelsC, LevelsE, proportionality, the learning paradigm condition, and the two-way 

interaction between LevelsC and the learning paradigm condition factor. The regressions included 

by-subject random slopes for LevelsC and LevelsE to account for repeated measures, and controlled 

for the objective causal strength of the datasets. The learning paradigm did not moderate the 

influence of LevelsC for judgments of causal strength (p = .561) or predictiveness (p = .898). 

In sum, taken together with the varied findings regarding the influence of LevelsC across 

the prior experiments, there are no consistent patterns showing people are sensitive to the 

specificity criterion. 
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5.2.1.2 The influence of LevelsE 

 

As expected, in the prediction task condition, participants made stronger judgments of causal 

strength and predictiveness when the effect had fewer levels (Table 9). In the delayed observation 

condition, the influence of LevelsE was significant for judgments of predictiveness but not 

judgments of causal strength. In the simultaneous observation condition, the influence of LevelsE 

was marginally significant for judgments of predictiveness, but not significant for judgments of 

causal strength. 

To test whether the learning paradigm moderated the influence of LevelsE, I ran separate 

regressions using data from all learning paradigm conditions, predicting each measure of objective 

strength from LevelsC, LevelsE, proportionality, the learning paradigm condition, and the two-way 

interaction between LevelsE and the learning paradigm condition. The regressions included by-

subject random slopes for LevelsC and LevelsE to account for repeated measures, and controlled 

for the objective causal strength of the datasets.  

The learning paradigm did not moderate the influence of LevelsE for judgments of causal 

strength (p = .283). However, for judgments of predictiveness, the influence of LevelsE was 

stronger in the prediction task condition compared to the delayed observation condition (B = 1.35, 

95% CI [0.74, 1.96], p < .001, 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2  = .034, 95% CI [.010, .073]) and the simultaneous observation 

condition (B = 1.55, 95% CI [0.94, 2.16], p < .001, 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁2  = .045, 95% CI [.016, .087]). There was 

no difference in the influence of LevelsE between the delayed and simultaneous observation 

conditions (p = .518). 

In sum, when making judgments of causal strength, there was only an influence of LevelsE 

when participants made explicit predictions. I had predicted that the influence of LevelsE would 
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be present, although weaker in the delayed observation condition. When making judgments of 

predictiveness, the pattern of results closely aligned with the hypotheses: the influence of LevelsE 

was strongest for the prediction condition, still significant although weaker for the delayed 

observation condition, and not significant for the simultaneous observation condition.  

The biggest inconsistency with the hypotheses was that there was a significant effect of 

LevelsE for the delayed condition for predictiveness but not for causal strength. One possible 

explanation for this is that the influence of LevelsE applies when participants are focusing on how 

well the causal relationship enables prediction – i.e. when making judgments of predictiveness. In 

contrast, when making judgments of causal strength, participants may be thinking of the strength 

of the relationship independent of its predictive utility. 

5.2.1.3 The influence of proportionality 

 

There were no differences in judgments of predictiveness between proportional and non-

proportional conditions for any of the learning paradigm conditions (Table 9). Participants made 

stronger judgments of causal strength in the proportional condition in the simultaneous 

observation condition. There were no differences in judgments of causal strength for the prediction 

task or delayed observation conditions.  

The findings regarding proportionality in the prediction task condition were similar to 

Experiment 3, which also found marginal effects of proportionality for judgments of causal 

strength. However, across all experiments, the effect of proportionality is not reliable. Further, it 

is not clear what is driving these differences, especially across experiments. Given the 

inconsistency of findings, and the fact that the observation conditions in the present experiment 

are completely different from prior experiments, I did not perform analyses to investigate if the 
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learning task moderated differences in judgments between the proportional vs. non-proportional 

conditions. 

5.3 Discussion 

In Experiment 4, participants’ judgments of causal strength and predictiveness were influenced 

by the granularity of the effect when they made predictions while learning about the causal 

relationship. When participants learned about the causal relationship via observation with a delay 

between the cause and effect, their judgments of predictiveness were also influenced by the 

granularity of the effect. This result suggested that participants were making implicit predictions, 

despite the task not requiring them to do so. However, when learning about the causal relationship 

via simultaneous observation of the cause and effect, the granularity of the effect on judgments of 

predictiveness was marginally significant. Despite having no opportunity to make a prediction, it 

is possible that participants first attended to the state of the cause and implicitly began to form a 

prediction before attending to the state of the effect. The results imply that subjective feelings-of-

success, the mechanism by which the effect’s granularity influences judgments of objective 

strength, arise mainly when participants engage in the act of prediction.  

In the prior experiments, participants were made to learn about a causal relationship via a 

prediction task for several reasons. First, this task was used for consistency with prior causal 

learning research involving trial-by-trial presentations of data (e.g., Derringer & Rottman, 2018; 

Liljeholm, 2015; Spellman, 1996). Second, I expected that making predictions on each trial would 

lead to participants being more engaged and attentive to the data. Third, prediction is a common 
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goal and function of causal knowledge in everyday contexts (e.g., Grzymala-Busse, 2011; Johnson 

& Keil, 2014; Zellner, 1988).  

Learning while engaging in the prediction task could be viewed as a more active form of 

causal learning because participants are given the opportunity to make inferences about the data. 

In past research on causal learning, a distinction has often been drawn between learning via passive 

observation of summary data (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005; Jenkins & Ward, 

1965; Vasilyeva, Blanchard, & Lombrozo, 2016) and learning via attending to sequential data that 

arises from interventions on a causal system (e.g., Hagmayer & Meder, 2013; Hagmayer, Meder, 

Osman, Mangold, & Lagnado, 2010; Hagmayer & Sloman, 2009; Robinson, Sloman, Hagmayer, 

& Hertzog, 2010; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003; Waldmann & Hagmayer, 

2005). The latter can be considered an active form of learning, as it requires learners to formulate 

and test hypotheses about the causal relationships in order to learn causal structures (Bramley, 

Lagnado, & Speekenbrink, 2015; Coenen, Rehder, & Gureckis, 2015; Lagnado & Sloman, 2004).  

The act of prediction may be inherent to some extent in all forms of learning that are active. 

The present prediction task differs from the aforementioned studies in that the goal is not to learn 

causal structures, but rather to predict the outcome of a variable. However, both require learners 

to make predictions about the outcome of some variable given information about related variables. 

Future research should investigate the effect of granularity in other tasks involving forms of active 

causal learning beyond the prediction task used in the present experiments. 

In sum, the present experiment, by comparing the influence of the effect’s granularity 

across different learning paradigms, demonstrated that the influence of the granularity of variables 

on causal learning depends on the type of learning task participants are engaged in. 
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6.0 General discussion 

The present research investigated the influence of varying levels of granularities of causes and 

effects on causal learning and reasoning. In order to navigate complex environments, people have 

to learn about causal relationships between variables to predict, explain, and control outcomes 

(Sloman, 2005; Sloman & Lagnado, 2015; Waldmann & Hagmayer, 2014). In the real world, some 

variables are more fine-grained (i.e. have more levels) and some are more coarse-grained (i.e. have 

fewer levels). Across all experiments reported here, participants were presented with data of cause-

effect pairs with a fixed causal strength, while the granularities of the cause and effect were 

manipulated. Participants learned the strength of the causal relationship while predicting the states 

of the effect from states of the cause.  

6.1 Summary of results 

The present experiments consistently found that coarser-grained effects led to stronger judgments 

of the objective strength of the relationship between the cause and effect, and also stronger 

judgments of subjective feelings-of-success (FOS) based on how accurate participants were in 

predicting the effect. This finding is consistent with the newly-proposed feelings-of-success 

heuristic. However, there was inconsistent evidence about whether these dependent variables were 

influenced by the granularity of the cause or whether the granularity of the cause matched the 

granularity of the effect. These lack of consistent findings speak against the specificity criterion 
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(Franklin-Hall, 2016; Griffiths, et al., 2015; Weslake, 2010) and the proportionality criterion 

(McGrath, 1998; Woodward, 2010; Yablo, 1992), respectively. 

In Experiment 1, I found that more fine-grained effects led to participants making weaker 

judgments of both subjective feelings of how accurate participants were in predicting the effect 

(the prediction success measure) and the objective strength of the relationship between the cause 

and effect, as measured by the causal strength and predictiveness measures. In Experiment 2, this 

finding held regardless of whether participants received or did not receive a bonus tied to the 

accuracy of their predictions.  

I hypothesized that the pattern of results described above could occur for the following 

reason. When participants made predictions of finer-grained effects, they may have had lower 

subjective FOS; they likely perceived the prediction task as being more difficult and their 

prediction accuracy to be lower because they were less likely to predict the exact state of the effect. 

I further hypothesized that participants used their subjective FOS for judging the objective strength 

of the cause-effect relationship; this proposed substitution is the feelings-of-success heuristic. 

I tested this hypothesis in Experiment 3 with a mediation analysis. Unlike in Experiments 

1 and 2, in Experiment 3 participants made judgments using all three measures. Experiment 3 

revealed that participants’ judgments of prediction success indeed mediated the relationship 

between the granularity of the effect and judgments of causal strength and predictiveness. 

The fact that participants’ judgments of causal strength and predictiveness were influenced 

by the granularity of the effect in Experiments 1 and 2 suggests that participants may have 

experienced subjective FOS based on their performance in the trial-be-trial prediction task, which 

was in turn substituted for their estimates of the objective strength of the causal relationship, even 
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though participants were not explicitly asked to make judgments of prediction success. The 

mediation analysis in Experiment 3 supported this interpretation.  

The substitution of subjective FOS for estimates of the objective causal strength implied 

by the feelings-of-success heuristic is consistent with research showing people substitute 

subjective mental states for estimates of less accessible quantities (Hertzog et al., 2003; 

Oppenheimer, 2008). Subjective FOS may have been used as a cue to objective strength because 

the strength of a cause-effect relationship should generally be highly related to prediction accuracy. 

When a causal relationship is very strong, learners should be able to very accurately predict the 

state of the effect after viewing the cause. Conversely, when a causal relationship is very weak, 

learners should be less accurate in making predictions of the effect. Thus, from a rational 

perspective, it is sensible for learners to use the feelings-of-success heuristic. However, as the 

present experiments demonstrate, the granularity of the effect influences learners’ subjective FOS 

independently of the objective causal strength; when the effect is very fine-grained, learners tend 

to judge themselves as having lower prediction success, which can explain their lower estimates 

of causal strength and predictiveness, despite the objective causal strength being held constant. In 

sum, the heuristic does not always lead to accurate inferences. 

In Experiment 4, I investigated if the influence of the effect’s granularity depended on 

participants engaging in the act of prediction. When participants were not required to make 

predictions explicitly, but observed the cause followed by the effect after a delay, the influence of 

the effect’s granularity was weaker but still significant on judgments of predictiveness. The 

findings from Experiment 4 suggested that even when not explicitly required to make a prediction, 

participants were making implicit predictions of the state of the effect upon observing the state of 

the cause, which gave rise to subjective FOS depending on the effect’s granularity. 



 

93 

6.2 The feelings-of-success heuristic 

6.2.1  The pervasiveness of the feelings-of-success heuristic 

I have proposed that when learning about a cause and effect while making predictions, the 

granularity of the effect influences learners’ subjective FOS, which in turn influences their 

judgments of the objective causal strength. The way learners use subjective FOS as a heuristic for 

making causal judgments is similar to how people substitute more accessible subjective or 

affective mental states for more objective judgments (e.g., Forgas, 1995; Greifeneder, Bless, & 

Pham, 2011). As previously mentioned, people substitute feelings related to the ease of learning 

for judgments of how well they have learned something (Hertzog et al., 2003; Koriat, 2008), and 

perceived ease of recall for judgments of objective statistics related to a target (Goldstein & 

Gigerenzer, 2002; Hertwig et al., 2008; Kahneman & Tversky, 1973; Pachur & Hertwig, 2006). 

The findings of Experiment 4 suggest that the granularity of the effect influences causal 

judgments largely because prediction is a pervasive cognitive act that occurs implicitly and 

spontaneously (e.g., Knoblich & Flach, 2001; Sebanz & Knoblich, 2009; Wolpert, Doya, & 

Kawato, 2003), giving rise to subjective FOS. In other words, the feelings-of-success heuristic 

may be a general heuristic applicable in learning tasks that require learners to make predictions 

and inferences different from the type of predictions involved in the present experiments.  

While the granularity of the effect influences subjective FOS in the present experiments, 

there may be other factors that influence subjective FOS, which in turn would influence learners’ 

judgments about objective causal strength. For example, increasing time pressure on learners as 

they make predictions may make the act of prediction feel more difficult and consequently 

diminish subjective FOS, leading to weaker causal judgments if learners are indeed using the 
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feelings-of-success heuristic (see Finucane, Alhakami, Slovic, & Johnson, 2000; Rieskamp & 

Hoffrage, 2008; Suri & Monroe, 2004). Subjective FOS may also be diminished by making tasks 

more effortful if learners feel that they are performing worse due to increased demands of the task 

(Koriat & Ma’ayan, 2005; Koriat & Nussinson, 2009). In sum, if learners use the feelings-of-

success heuristic more generally, numerous factors that influence subjective FOS could 

consequently influence judgments of objective quantities. 

6.2.2  Subjective feelings-of-success in prior research 

Subjective FOS may also have influenced the results of prior studies on causal learning in which 

participants were presented with trial-by-trial data of binary causes and binary effects. This may 

have occurred even when participants did not make explicit predictions, but subjective FOS likely 

had a larger effect when participants had to make explicit predictions concerning the state of the 

effect based on the state of the cause, as they are required to in many studies (e.g., Derringer & 

Rottman, 2018; Liljeholm, 2015; Spellman, 1996). If participants happened to make more correct 

predictions, they would have experienced greater subjective FOS, which would have led to 

stronger judgments of objective causal strength. In such cases, and in general, using the feelings-

of-success heuristic by substituting subjective FOS for judgments of causal strength may be 

sensible, because stronger causal relationships should enable more accurate predictions.  

The present experiments demonstrate that subjective FOS can be disentangled from 

objective causal strength by manipulating the granularity of the effect. Future research should 

investigate other factors that may influence subjective FOS independently from objective causal 

strength in order to identify the boundary conditions for the feelings-of-success heuristic being an 

effective way to accurately estimate causal strength. 
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Beyond research that specifically investigates how people assess the strength of a cause-

effect relationship, subjective FOS may also influence judgments about covariation and associative 

strength between cues. Most models of associative and reinforcement learning posit that learners 

learn about relationships via making predictions about outcomes and receiving feedback on their 

prediction accuracy, which allows for the possibility that subjective FOS (arising from the act of 

making predictions) may influence estimates of associative strength (Klopf, 1988; Rescorla & 

Wagner, 1972; Rumelhart, Hinton, & Williams, 1986; Stone, 1986; Sutton, 1988; Sutton & Barto, 

1981, 1987; also see Sutton & Barto, 1998). More generally, models of probability learning assume 

learners are making predictions about outcomes as they learn about probabilities (e.g., Biele, Erev, 

& Ert, 2009; Lejarraga, Dutt, & Gonzalez, 2010), while models of category learning assume 

learners are making predictions about features and properties as they learn about categories (e.g., 

Rehder, 2006, 2009, 2015; Rehder & Hastie, 2004; Rehder & Kim, 2010; Vogel, Kutzner, Freytag, 

& Fiedler, 2014). Given the central role that prediction plays in cognition, it is likely that subjective 

FOS may influence a wide array of judgments in such tasks. 

6.2.3  Granularity of the effect vs. granularity of the predicted variable 

In the present experiments, judgments of the objective strength of cause-effect relationships were 

influenced by the granularity of the effect, though not consistently by the granularity of the cause. 

One question is whether this finding is actually driven by this distinction between cause and effect. 

Another hypothesis is that it is actually driven by the granularity of the variable that the learner 

needs to predict from the cue that is presented. (In all the present experiments, the cause was the 

cue and the effect was the outcome being predicted.) This hypothesis could be tested with a design 

that manipulated whether participants inferred the state of the effect from the state of the cause (as 
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in the present experiments), or inferred the state of the cause from the effect. This latter form of 

reasoning is referred to as “diagnostic”, in contrast to “predictive” reasoning, and prior research 

has documented asymmetries in how well people are able to reason in each direction (e.g., 

Fernbach, Darlow, & Sloman, 2011; Waldmann & Holyoak, 1992). 

If subjective FOS is influenced only by the granularity of the predicted variable, then when 

participants learn about the causal relationship while making diagnostic predictions of the cause 

from the effect, there should be an influence of the cause’s granularity but not the effect’s 

granularity. On the other hand, reasoning from causes to effects (i.e. predictive reasoning) can be 

considered more natural because the variables are observed in a natural sequence; in diagnostic 

reasoning, learners infer the state of the cause, which happened prior to the observed effect. Thus, 

it is possible that the granularity of the effect has a privileged status in causal learning and may 

still influence learners’ judgments of causal strength. 

6.3 The role of granularity in other tasks 

The present experiments focused on the role of granularity in a learning task in which learners 

made predictions of a single effect based on observing a single cause, and finally estimated the 

objective strength of the causal relationship. There are other tasks that learners engage in when 

learning and reasoning about causal relationships. An open question of interest is whether the role 

of granularity is similar or different across various tasks.  

For example, in some causal learning tasks, the goal is not to learn the causal strength 

underlying a known cause-effect relationship, but to learn the causal structure underlying a set of 

variables. To learn which variables exert a causal influence on others, learners make interventions 
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on certain variables and observe what outcomes occur amongst the other variables. The majority 

of these experiments utilize binary variables (Bramley, Dayan, Griffiths, & Lagnado, 2017; 

Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018; Bramley et al., 2015; Lagnado & Sloman, 

2004, 2006), although some have utilized continuous variables (Davis et al., 2018; Hagmayer et 

al., 2010; Soo & Rottman, 2014). However, none have investigated the role of the granularity of 

the variables. Learners in this task often try to identify causal variables that grant them maximal 

control over other variables (Coenen, Rehder, & Gureckis, 2015; also see Kim, Luhmann, Pierce, 

& Ryan, 2009). Given that strategy, learners may be more likely to infer that fine-grained variables 

are causes because such variables appear to grant learners more control over other variables, which 

would imply sensitivity to the specificity criterion (Franklin-Hall, 2016; Griffiths, et al., 2015; 

Weslake, 2010). 

In some other causal learning tasks, learners experience data of multiple causes and a single 

effect, and the goal is to identify which cause or causes have an influence on the effect and the 

strength of each cause-effect relationship after controlling for the other causes (Coenen, Bramley, 

Ruggeri, & Gureckis, 2017; Derringer & Rottman, 2016, 2018; Spellman, 1996; Spellman, Price, 

& Logan, 2001). In past research, the granularities of all causes are held constant (typically, they 

are binary variables). Compared to the present experiments, such tasks require learners to attend 

to much more information due to there being multiple causes. In such situations, the feelings-of-

success heuristic may not be applied because learners would have to make predictions from a 

combination of causes. Woodward (2010, 2018b) proposed the proportionality criterion as a way 

to evaluate if a particular variable is a good causal candidate for an effect, which is especially 

relevant for selecting the most appropriate causal candidate amongst others (also see Woodward, 

2016). Thus, in a learning context involving multiple causes and a single effect, controlling for the 
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causal strength of all causes, learners may be sensitive to the proportionality criterion and make 

stronger judgments for causes that are proportional to the effect.  

It would also be interesting to investigate the role of the granularity of features used in 

categorization (Goldstone, 1994; Gregan-Paxton, Hoeffler, & Zhao, 2005; Kemp, 2012; Stewart 

& Chater, 2002). For example, research on causal categorization investigates how the causal 

relationships between the features of entities influence categorization (Ahn, 1999; Kim et al., 2009; 

Rehder, 2003; Rehder & Burnett, 2005; Rehder & Kim, 2006, 2010). In existing research of causal 

categorization, learners are typically presented with features represented with binary variables. 

However, existing research on function learning has investigated the learning of categories 

involving multi-level variables (e.g., DeLosh, Busemeyer, & McDaniel, 1997). While more fine-

grained features provide more information from a statistical perspective and would theoretically 

allow learners to classify objects into more complex categories or permit better discrimination 

between categories, the present research suggests that coarse-grained features may lead to learners 

inferring stronger relationships between features that are coarse-grained, which may lead to 

stronger judgments of objects being members of a particular category. 

6.4 Causal learning with a discretized variable when the underlying continuous variable is 

also observable 

In the present experiments, I used a simple learning context in which participants viewed the states 

of discretized variables that plausibly represented a continuous cause and effect. Participants were 

told that the granularities of the discretized variables reflected the sensitivity of each variable’s 

measurement (i.e. more sensitive measurements resulted in more fine-grained scales). In contrast 
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to this simple learning context, people sometimes have access to both the state of a continuous 

variable and an accompanying discretized state (based on that continuous variable). For example, 

a doctor might measure a patient’s blood glucose level and obtain a value on a continuous scale 

(e.g., 105 mg/dL). In addition, the measurement tool (e.g., medical software) might provide an 

accompanying label for that value (e.g., “low”, “normal”, or “high”). That label can be viewed as 

a level on a discretized scale. 

Suppose that a learner is trying to estimate the causal strength of the relationship between 

a binary variable (e.g., patients who do vs. do not take a drug) on an outcome that is simultaneously 

represented as both a continuous and a discretized variable (e.g., mg/DL and labels of “low”, 

“normal”, or “high”). In such a situation, there are several interesting questions that arise. First, 

when learning the causal strength of the drug, an important question is whether learners would 

focus on the underlying continuous measure of blood glucose, or the accompanying discretized 

variable. This could be tested by presenting participants with datasets in which the correlation 

between the drug’s dosage and the continuous measure of blood glucose diverges from the 

correlation between the drug’s dosage and the accompanying discretized labels for the blood 

glucose level. Although the correlation between the drug’s dosage and measurements of blood 

glucose on the continuous scale provides a more accurate estimate of the objective causal strength, 

learners may find attending to the discretized labels less cognitively demanding when trying to 

predict the blood glucose level (i.e. it is easier to predict if a patient’s blood glucose is “too low” 

or “too high” compared to predicting an exact level on the continuous measure). Prior research has 

found that even when presented with continuous or ambiguous values, learners often assimilate 

those values into more coarse-grained categories for learning and classification (Marsh & Ahn, 

2009; Murphy & Ross, 1999; Tajfel & Wilkes, 1963; Voss, Rothermund, & Brandtsta, 2008). 
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A second and related question of interest is what factors moderate whether learners attend 

to an underlying continuous measure of a variable or its accompanying discretized variable. Using 

the same example, learners may attend more to the continuous measure of blood glucose if they 

have reason to think the discretized cutoffs are arbitrary – e.g., if individual doctors make their 

own judgments of what level is “too high” as opposed to the cutoffs being agreed upon by medical 

community, if the underlying distribution is bimodal, or if the cutoff signifies a medically-relevant 

threshold (e.g., above a certain level, a secondary symptom occurs).  

Finally, in contexts in which learners have access to an underlying continuous variable, a 

question of interest is how the granularity of an accompanying discretized variable influences 

judgments of causal strength. This could be tested by presenting participants datasets with identical 

observations of the underlying continuous variable, but varying the granularity of the 

accompanying discretized variable. If participants make implicit predictions of the discretized 

variable, they may feel the prediction task is easier when the discretized variable is coarse-grained, 

leading to stronger judgments of causal strength (due to the feelings-of-success heuristic). 

However, if the states of the underlying continuous variable are observable, perhaps the influence 

of the discretized variable’s granularity would be attenuated.  

6.5 Contributions 

Initial research on causal learning focused on highly-simplified learning contexts involving binary 

variables (Allan & Jenkins, 1983; Cheng, 1997; Griffiths & Tenenbaum, 2005; Jenkins & Ward, 

1965). Subsequent research has focused on more complex learning contexts by incorporating more 
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fine-grained variables (e.g., Chow, Don, Colagiuri, & Livesey, 2018; Marsh & Ahn, 2009; Saito, 

2015; Soo & Rottman, 2018; White, 2013).  

The primary motivation of the present research was to investigate the role of the cause and 

effect’s granularity in prediction and causal learning. The results show that at least the granularity 

of the effect consistently influenced learners’ judgments of causal strength, opening up 

possibilities for how prior findings involving various tasks related to causal learning and reasoning 

may also depend on the granularity of the variables involved. Future research investigating the role 

of granularity in a wider range of cognitive tasks would provide a deeper understanding of how 

people reason and learn about causal relationships in complex environments. 

Another theoretical contribution of the present research was providing an empirical test for 

concepts of causation from philosophy. While theories from philosophy are relevant to and inform 

our understanding of causation (e.g., Woodward, 2003), they are rarely subjected to empirical 

testing. The present research is an initial step towards a line of research that subjects philosophical 

theories of causation to testing via behavioral experiments, in line with the burgeoning field of 

experimental philosophy (Knobe, 2007; Rose & Danks, 2013; Sosa, 2007). While it is perhaps 

clear how philosophical theories can inform normative accounts of causal cognition (e.g., 

Cartwright, 2002, 2004; Danks, 2005; Eberhardt & Scheines, 2007; Glymour, 1998; Gopnik & 

Schulz, 2007; Lewis, 1973, 2000; Salmon, 1994; Spirtes, 2010; White, 1990; Woodward, 1996), 

it is less common for descriptive accounts based on experimental findings to inform philosophical 

accounts of causation. The present research aimed to integrate findings from psychology with the 

philosophy literature, hopefully leading to future research in a similar vein that fosters a broader 

interdisciplinary focus. 



 

102 

In addition to the theoretical contributions to causal learning research, there are practical 

implications of the present findings. People commonly have to make decisions based upon cues 

that may be more coarse- or fine-grained; for example, in medical diagnosis (Schwartz, Gorry, 

Kassirer, & Essig, 1973), and when making social judgments (e.g., Caruso, Mead, & Balcetis, 

2009; Voss, Rothermund, & Brandtsta, 2008). The present research suggests that the granularity 

of the information people receive or encode can influence the judgments they make when learning 

about relationships between variables. Furthermore, the finding that the granularity of the effect 

influences estimates of objective causal strength suggests that discretizing variables (e.g., 

presenting people with simplified variables in the output of tests and decision support systems) 

can sometimes lead to biases in judgments.  

6.6 Conclusion 

Four experiments found that when learning about causal relationships while making predictions of 

an effect, learners judged causal strength to be greater when the effect was more coarse-grained, 

despite the objective causal strength being held constant. Through a mediation analysis, learners’ 

subjective feelings-of-success when making predictions were identified as the mechanism by 

which the granularity of the effect influenced causal judgments.  

These experiments paint an optimistic picture of human causal learning and reasoning; 

substituting subjective feelings-of-success for judgments of objective causal strength – which I 

refer to as the feelings-of-success heuristic – is sensible because in many contexts, stronger causal 

relationships can be used to make more accurate predictions. However, there are many real-world 

factors that can lead human learners into making errors; when subjective feelings-of-success are 
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influenced by factors unrelated to the objective causal strength like the granularity of variables, 

using the feelings-of-success heuristic can lead to biases in judgment. 
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Appendix A Assessing the relationship between the cause and effect in the stimuli 

In all datasets used as stimuli, regardless of the granularity of the cause or effect, the correlation 

between variables was r = +.60 ± .01 (or r = -.60 ± .01 in the reverse-coded versions). An additional 

property of the datasets was that the relationship between the variables in each dataset was only 

linear, rather than a higher-order polynomial.  

When the cause had only two levels, only a linear relationship could be estimated between 

the cause and effect. However, when the cause had more levels – e.g., LevelsC = 13 – there could 

be a higher-order (e.g., quadratic) relationship between the cause and effect. In some datasets, both 

linear and quadratic functions might fit the data. To ensure that the function relating the cause and 

effect was consistent, I evaluated each generated dataset (see Section 2.1.3) using the BayesVarSel 

package in R (Garcia-Donato & Forte, 2018) to determine that the data was best fitted with a linear 

function. 

For each dataset, I fitted a linear model that predicted the state of the effect (E) from the 

state of the cause (C), and a quadratic model that predicted E from C2. Next, I used the 

BayesVarSel package to compute Bayes factor and the posterior probability of each model relative 

to a baseline model in which E is predicted only by an intercept, with a uniform prior probability 

across the baseline model and the model being tested. 

I retained as stimuli only those datasets in which the posterior probability of the quadratic 

model was lower than the posterior probability of the linear model. 
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Appendix B Participants’ prediction accuracy in the trial-by-trial prediction task 

The purpose of the current section is to present participants’ trial-level accuracy in the prediction 

task, indicating that participants were indeed learning about the causal relationships in the data 

during the prediction task. If participants were learning about the causal relationship, they would 

make increasingly accurate predictions as each scenario progressed. 

I assessed the accuracy of participants’ trial-by-trial predictions by computing the 

standardized squared error of all predictions made by participants for each trial. Participants’ 

prediction accuracies were compared to predictions made by a model that made random 

predictions on each trial (the random model) and a model that made predictions using a series of 

regression models predicting each new state of the effect from all prior observed values within a 

particular dataset (the ideal observer model9). These models were fitted to the same datasets that 

participants actually viewed in the experiments. 

The following figures display the average accuracy of participants’ trial-by-trial 

predictions over the 20 trials of all scenarios within each condition of a particular experiment. The 

average standardized squared error of participants’ predictions within each trial are plotted with 

black circles, which can be compared to the average standardized squared error of predictions by 

the random (white triangles) and ideal observer models (white squares). I have fitted log functions 

to the average predictions for each model so that the trends can be compared visually. 

                                                 

9 For the first two trials, during which there were insufficient prior observations to make predictions using 

regression, the ideal observer model made random predictions. 
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B.1 Trial-by-trial accuracy in Experiment 1 

The results for participants’ average trial-level prediction accuracy across conditions in 

Experiment 1 are displayed in Figure 19. 

 

 

Figure 19. Average standardized squared error for predictions across trials by condition in Experiment 1. 

Error bars represent standard errors. 

 

On almost all trials, participants’ predictions had lower standardized squared errors 

(i.e. were more accurate) than the random model but are slightly less accurate than predictions by 

the ideal observer model. Although participants’ predictions always had higher standardized 
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squared errors than the ideal observer model, it is evident that after sufficient trials, participants’ 

learning of the function relating the cause and effect was better than chance, indicating participants 

were successfully learning about the causal relationship and successfully using the state of the 

cause to predict the state of the effect. 

An issue with assessing prediction accuracy based on standardized squared error is that 

performance depends on the granularity of the effect (comparing across rows in Figure 19). When 

the effect has more levels, the standardized error is inflated because of the larger scale. This can 

be seen in the larger average standardized squared errors for conditions in which the effect has 

more levels (see the y-axis for plots across different rows). This was one motivation for introducing 

the accuracy bonus points scheme (Section 2.1.5) – to provide a cue for prediction accuracy that 

did not depend on the differing scales of the effect. 

The crucial finding in the present section is that participants appeared to be learning the 

causal relationships from the data in all conditions, as demonstrated by their increasing accuracy 

(decreasing error) in predicting the state of the effect from observing the state of the cause. 

B.2 Trial-by-trial prediction accuracy in Experiment 2 

In Figure 20, I present results for Experiment 2, which include both the accuracy of predictions 

made by participants who received and did not receive bonus points. Ideally, participants should 

learn with similar accuracy both with and without feedback and incentives for making accurate 

predictions. The average standardized squared error of participants' predictions within each trial 

are plotted with black points (circles = participants who received bonus points, diamonds = 

participants who received no bonus points). 
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Figure 20. Average standardized squared error for predictions across trials by condition in Experiment 2. 

Error bars represent standard errors. 

 

On almost all trials, participants’ predictions had lower standardized squared errors (i.e. are 

more accurate) than the random model but were slightly less accurate than predictions by the ideal 

observer model. Crucially, there did not appear to be differences in prediction accuracy between 

participants who received bonus points vs. those who received no bonus points. In both conditions, 

participants’ predictions became more accurate with more trials, converging to levels somewhere 

between the accuracies of the random and ideal observer models. 
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B.3 Trial-by-trial prediction accuracy in Experiment 3 

The results for participants’ average trial-level prediction accuracy across conditions in 

Experiment 3 are displayed in Figure 21. In general, participants’ trial-level prediction accuracy 

was similar to the prior experiments. 

 

 

Figure 21. Average standardized squared error for predictions across trials by condition in Experiment 3. 

Error bars represent standard errors. 
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B.4 Trial-by-trial prediction accuracy in Experiment 4 

The results for participants’ average trial-level prediction accuracy across conditions in 

Experiment 4 are displayed in Figure 22. In general, participants’ trial-level prediction accuracy 

was similar to the prior experiments. Note that in Experiment 4, only a third of participants in the 

prediction task condition actually made trial-by-trial predictions. 

 

 

Figure 22. Average standardized squared error for predictions across trials by condition in Experiment 4. 

Error bars represent standard errors. 
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